1
0

btMultiBodyConstraint.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. #include "btMultiBodyConstraint.h"
  2. #include "bullet/BulletDynamics/Dynamics/btRigidBody.h"
  3. btMultiBodyConstraint::btMultiBodyConstraint(btMultiBody* bodyA,btMultiBody* bodyB,int linkA, int linkB, int numRows, bool isUnilateral)
  4. :m_bodyA(bodyA),
  5. m_bodyB(bodyB),
  6. m_linkA(linkA),
  7. m_linkB(linkB),
  8. m_num_rows(numRows),
  9. m_isUnilateral(isUnilateral),
  10. m_maxAppliedImpulse(100)
  11. {
  12. m_jac_size_A = (6 + bodyA->getNumLinks());
  13. m_jac_size_both = (m_jac_size_A + (bodyB ? 6 + bodyB->getNumLinks() : 0));
  14. m_pos_offset = ((1 + m_jac_size_both)*m_num_rows);
  15. m_data.resize((2 + m_jac_size_both) * m_num_rows);
  16. }
  17. btMultiBodyConstraint::~btMultiBodyConstraint()
  18. {
  19. }
  20. btScalar btMultiBodyConstraint::fillConstraintRowMultiBodyMultiBody(btMultiBodySolverConstraint& constraintRow,
  21. btMultiBodyJacobianData& data,
  22. btScalar* jacOrgA,btScalar* jacOrgB,
  23. const btContactSolverInfo& infoGlobal,
  24. btScalar desiredVelocity,
  25. btScalar lowerLimit,
  26. btScalar upperLimit)
  27. {
  28. constraintRow.m_multiBodyA = m_bodyA;
  29. constraintRow.m_multiBodyB = m_bodyB;
  30. btMultiBody* multiBodyA = constraintRow.m_multiBodyA;
  31. btMultiBody* multiBodyB = constraintRow.m_multiBodyB;
  32. if (multiBodyA)
  33. {
  34. const int ndofA = multiBodyA->getNumLinks() + 6;
  35. constraintRow.m_deltaVelAindex = multiBodyA->getCompanionId();
  36. if (constraintRow.m_deltaVelAindex <0)
  37. {
  38. constraintRow.m_deltaVelAindex = data.m_deltaVelocities.size();
  39. multiBodyA->setCompanionId(constraintRow.m_deltaVelAindex);
  40. data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofA);
  41. } else
  42. {
  43. btAssert(data.m_deltaVelocities.size() >= constraintRow.m_deltaVelAindex+ndofA);
  44. }
  45. constraintRow.m_jacAindex = data.m_jacobians.size();
  46. data.m_jacobians.resize(data.m_jacobians.size()+ndofA);
  47. data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
  48. btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
  49. for (int i=0;i<ndofA;i++)
  50. data.m_jacobians[constraintRow.m_jacAindex+i] = jacOrgA[i];
  51. btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacAindex];
  52. multiBodyA->calcAccelerationDeltas(&data.m_jacobians[constraintRow.m_jacAindex],delta,data.scratch_r, data.scratch_v);
  53. }
  54. if (multiBodyB)
  55. {
  56. const int ndofB = multiBodyB->getNumLinks() + 6;
  57. constraintRow.m_deltaVelBindex = multiBodyB->getCompanionId();
  58. if (constraintRow.m_deltaVelBindex <0)
  59. {
  60. constraintRow.m_deltaVelBindex = data.m_deltaVelocities.size();
  61. multiBodyB->setCompanionId(constraintRow.m_deltaVelBindex);
  62. data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofB);
  63. }
  64. constraintRow.m_jacBindex = data.m_jacobians.size();
  65. data.m_jacobians.resize(data.m_jacobians.size()+ndofB);
  66. for (int i=0;i<ndofB;i++)
  67. data.m_jacobians[constraintRow.m_jacBindex+i] = jacOrgB[i];
  68. data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
  69. btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
  70. multiBodyB->calcAccelerationDeltas(&data.m_jacobians[constraintRow.m_jacBindex],&data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacBindex],data.scratch_r, data.scratch_v);
  71. }
  72. {
  73. btVector3 vec;
  74. btScalar denom0 = 0.f;
  75. btScalar denom1 = 0.f;
  76. btScalar* jacB = 0;
  77. btScalar* jacA = 0;
  78. btScalar* lambdaA =0;
  79. btScalar* lambdaB =0;
  80. int ndofA = 0;
  81. if (multiBodyA)
  82. {
  83. ndofA = multiBodyA->getNumLinks() + 6;
  84. jacA = &data.m_jacobians[constraintRow.m_jacAindex];
  85. lambdaA = &data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacAindex];
  86. for (int i = 0; i < ndofA; ++i)
  87. {
  88. btScalar j = jacA[i] ;
  89. btScalar l =lambdaA[i];
  90. denom0 += j*l;
  91. }
  92. }
  93. if (multiBodyB)
  94. {
  95. const int ndofB = multiBodyB->getNumLinks() + 6;
  96. jacB = &data.m_jacobians[constraintRow.m_jacBindex];
  97. lambdaB = &data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacBindex];
  98. for (int i = 0; i < ndofB; ++i)
  99. {
  100. btScalar j = jacB[i] ;
  101. btScalar l =lambdaB[i];
  102. denom1 += j*l;
  103. }
  104. }
  105. if (multiBodyA && (multiBodyA==multiBodyB))
  106. {
  107. // ndof1 == ndof2 in this case
  108. for (int i = 0; i < ndofA; ++i)
  109. {
  110. denom1 += jacB[i] * lambdaA[i];
  111. denom1 += jacA[i] * lambdaB[i];
  112. }
  113. }
  114. btScalar d = denom0+denom1;
  115. if (btFabs(d)>SIMD_EPSILON)
  116. {
  117. constraintRow.m_jacDiagABInv = 1.f/(d);
  118. } else
  119. {
  120. constraintRow.m_jacDiagABInv = 1.f;
  121. }
  122. }
  123. //compute rhs and remaining constraintRow fields
  124. btScalar rel_vel = 0.f;
  125. int ndofA = 0;
  126. int ndofB = 0;
  127. {
  128. btVector3 vel1,vel2;
  129. if (multiBodyA)
  130. {
  131. ndofA = multiBodyA->getNumLinks() + 6;
  132. btScalar* jacA = &data.m_jacobians[constraintRow.m_jacAindex];
  133. for (int i = 0; i < ndofA ; ++i)
  134. rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
  135. }
  136. if (multiBodyB)
  137. {
  138. ndofB = multiBodyB->getNumLinks() + 6;
  139. btScalar* jacB = &data.m_jacobians[constraintRow.m_jacBindex];
  140. for (int i = 0; i < ndofB ; ++i)
  141. rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
  142. }
  143. constraintRow.m_friction = 0.f;
  144. constraintRow.m_appliedImpulse = 0.f;
  145. constraintRow.m_appliedPushImpulse = 0.f;
  146. btScalar velocityError = desiredVelocity - rel_vel;// * damping;
  147. btScalar erp = infoGlobal.m_erp2;
  148. btScalar velocityImpulse = velocityError *constraintRow.m_jacDiagABInv;
  149. if (!infoGlobal.m_splitImpulse)
  150. {
  151. //combine position and velocity into rhs
  152. constraintRow.m_rhs = velocityImpulse;
  153. constraintRow.m_rhsPenetration = 0.f;
  154. } else
  155. {
  156. //split position and velocity into rhs and m_rhsPenetration
  157. constraintRow.m_rhs = velocityImpulse;
  158. constraintRow.m_rhsPenetration = 0.f;
  159. }
  160. constraintRow.m_cfm = 0.f;
  161. constraintRow.m_lowerLimit = lowerLimit;
  162. constraintRow.m_upperLimit = upperLimit;
  163. }
  164. return rel_vel;
  165. }
  166. void btMultiBodyConstraint::applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
  167. {
  168. for (int i = 0; i < ndof; ++i)
  169. data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
  170. }
  171. void btMultiBodyConstraint::fillMultiBodyConstraintMixed(btMultiBodySolverConstraint& solverConstraint,
  172. btMultiBodyJacobianData& data,
  173. const btVector3& contactNormalOnB,
  174. const btVector3& posAworld, const btVector3& posBworld,
  175. btScalar position,
  176. const btContactSolverInfo& infoGlobal,
  177. btScalar& relaxation,
  178. bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
  179. {
  180. btVector3 rel_pos1 = posAworld;
  181. btVector3 rel_pos2 = posBworld;
  182. solverConstraint.m_multiBodyA = m_bodyA;
  183. solverConstraint.m_multiBodyB = m_bodyB;
  184. solverConstraint.m_linkA = m_linkA;
  185. solverConstraint.m_linkB = m_linkB;
  186. btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
  187. btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
  188. const btVector3& pos1 = posAworld;
  189. const btVector3& pos2 = posBworld;
  190. btSolverBody* bodyA = multiBodyA ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdA);
  191. btSolverBody* bodyB = multiBodyB ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdB);
  192. btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
  193. btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
  194. if (bodyA)
  195. rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
  196. if (bodyB)
  197. rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
  198. relaxation = 1.f;
  199. if (multiBodyA)
  200. {
  201. const int ndofA = multiBodyA->getNumLinks() + 6;
  202. solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
  203. if (solverConstraint.m_deltaVelAindex <0)
  204. {
  205. solverConstraint.m_deltaVelAindex = data.m_deltaVelocities.size();
  206. multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
  207. data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofA);
  208. } else
  209. {
  210. btAssert(data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
  211. }
  212. solverConstraint.m_jacAindex = data.m_jacobians.size();
  213. data.m_jacobians.resize(data.m_jacobians.size()+ndofA);
  214. data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
  215. btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
  216. btScalar* jac1=&data.m_jacobians[solverConstraint.m_jacAindex];
  217. multiBodyA->fillContactJacobian(solverConstraint.m_linkA, posAworld, contactNormalOnB, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
  218. btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
  219. multiBodyA->calcAccelerationDeltas(&data.m_jacobians[solverConstraint.m_jacAindex],delta,data.scratch_r, data.scratch_v);
  220. } else
  221. {
  222. btVector3 torqueAxis0 = rel_pos1.cross(contactNormalOnB);
  223. solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
  224. solverConstraint.m_relpos1CrossNormal = torqueAxis0;
  225. solverConstraint.m_contactNormal1 = contactNormalOnB;
  226. }
  227. if (multiBodyB)
  228. {
  229. const int ndofB = multiBodyB->getNumLinks() + 6;
  230. solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
  231. if (solverConstraint.m_deltaVelBindex <0)
  232. {
  233. solverConstraint.m_deltaVelBindex = data.m_deltaVelocities.size();
  234. multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
  235. data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofB);
  236. }
  237. solverConstraint.m_jacBindex = data.m_jacobians.size();
  238. data.m_jacobians.resize(data.m_jacobians.size()+ndofB);
  239. data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
  240. btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
  241. multiBodyB->fillContactJacobian(solverConstraint.m_linkB, posBworld, -contactNormalOnB, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
  242. multiBodyB->calcAccelerationDeltas(&data.m_jacobians[solverConstraint.m_jacBindex],&data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],data.scratch_r, data.scratch_v);
  243. } else
  244. {
  245. btVector3 torqueAxis1 = rel_pos2.cross(contactNormalOnB);
  246. solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
  247. solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
  248. solverConstraint.m_contactNormal2 = -contactNormalOnB;
  249. }
  250. {
  251. btVector3 vec;
  252. btScalar denom0 = 0.f;
  253. btScalar denom1 = 0.f;
  254. btScalar* jacB = 0;
  255. btScalar* jacA = 0;
  256. btScalar* lambdaA =0;
  257. btScalar* lambdaB =0;
  258. int ndofA = 0;
  259. if (multiBodyA)
  260. {
  261. ndofA = multiBodyA->getNumLinks() + 6;
  262. jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
  263. lambdaA = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
  264. for (int i = 0; i < ndofA; ++i)
  265. {
  266. btScalar j = jacA[i] ;
  267. btScalar l =lambdaA[i];
  268. denom0 += j*l;
  269. }
  270. } else
  271. {
  272. if (rb0)
  273. {
  274. vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
  275. denom0 = rb0->getInvMass() + contactNormalOnB.dot(vec);
  276. }
  277. }
  278. if (multiBodyB)
  279. {
  280. const int ndofB = multiBodyB->getNumLinks() + 6;
  281. jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
  282. lambdaB = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
  283. for (int i = 0; i < ndofB; ++i)
  284. {
  285. btScalar j = jacB[i] ;
  286. btScalar l =lambdaB[i];
  287. denom1 += j*l;
  288. }
  289. } else
  290. {
  291. if (rb1)
  292. {
  293. vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
  294. denom1 = rb1->getInvMass() + contactNormalOnB.dot(vec);
  295. }
  296. }
  297. if (multiBodyA && (multiBodyA==multiBodyB))
  298. {
  299. // ndof1 == ndof2 in this case
  300. for (int i = 0; i < ndofA; ++i)
  301. {
  302. denom1 += jacB[i] * lambdaA[i];
  303. denom1 += jacA[i] * lambdaB[i];
  304. }
  305. }
  306. btScalar d = denom0+denom1;
  307. if (btFabs(d)>SIMD_EPSILON)
  308. {
  309. solverConstraint.m_jacDiagABInv = relaxation/(d);
  310. } else
  311. {
  312. solverConstraint.m_jacDiagABInv = 1.f;
  313. }
  314. }
  315. //compute rhs and remaining solverConstraint fields
  316. btScalar restitution = 0.f;
  317. btScalar penetration = isFriction? 0 : position+infoGlobal.m_linearSlop;
  318. btScalar rel_vel = 0.f;
  319. int ndofA = 0;
  320. int ndofB = 0;
  321. {
  322. btVector3 vel1,vel2;
  323. if (multiBodyA)
  324. {
  325. ndofA = multiBodyA->getNumLinks() + 6;
  326. btScalar* jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
  327. for (int i = 0; i < ndofA ; ++i)
  328. rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
  329. } else
  330. {
  331. if (rb0)
  332. {
  333. rel_vel += rb0->getVelocityInLocalPoint(rel_pos1).dot(solverConstraint.m_contactNormal1);
  334. }
  335. }
  336. if (multiBodyB)
  337. {
  338. ndofB = multiBodyB->getNumLinks() + 6;
  339. btScalar* jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
  340. for (int i = 0; i < ndofB ; ++i)
  341. rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
  342. } else
  343. {
  344. if (rb1)
  345. {
  346. rel_vel += rb1->getVelocityInLocalPoint(rel_pos2).dot(solverConstraint.m_contactNormal2);
  347. }
  348. }
  349. solverConstraint.m_friction = 0.f;//cp.m_combinedFriction;
  350. restitution = restitution * -rel_vel;//restitutionCurve(rel_vel, cp.m_combinedRestitution);
  351. if (restitution <= btScalar(0.))
  352. {
  353. restitution = 0.f;
  354. };
  355. }
  356. ///warm starting (or zero if disabled)
  357. /*
  358. if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
  359. {
  360. solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
  361. if (solverConstraint.m_appliedImpulse)
  362. {
  363. if (multiBodyA)
  364. {
  365. btScalar impulse = solverConstraint.m_appliedImpulse;
  366. btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
  367. multiBodyA->applyDeltaVee(deltaV,impulse);
  368. applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
  369. } else
  370. {
  371. if (rb0)
  372. bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
  373. }
  374. if (multiBodyB)
  375. {
  376. btScalar impulse = solverConstraint.m_appliedImpulse;
  377. btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
  378. multiBodyB->applyDeltaVee(deltaV,impulse);
  379. applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
  380. } else
  381. {
  382. if (rb1)
  383. bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
  384. }
  385. }
  386. } else
  387. */
  388. {
  389. solverConstraint.m_appliedImpulse = 0.f;
  390. }
  391. solverConstraint.m_appliedPushImpulse = 0.f;
  392. {
  393. btScalar positionalError = 0.f;
  394. btScalar velocityError = restitution - rel_vel;// * damping;
  395. btScalar erp = infoGlobal.m_erp2;
  396. if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
  397. {
  398. erp = infoGlobal.m_erp;
  399. }
  400. if (penetration>0)
  401. {
  402. positionalError = 0;
  403. velocityError = -penetration / infoGlobal.m_timeStep;
  404. } else
  405. {
  406. positionalError = -penetration * erp/infoGlobal.m_timeStep;
  407. }
  408. btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
  409. btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
  410. if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
  411. {
  412. //combine position and velocity into rhs
  413. solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
  414. solverConstraint.m_rhsPenetration = 0.f;
  415. } else
  416. {
  417. //split position and velocity into rhs and m_rhsPenetration
  418. solverConstraint.m_rhs = velocityImpulse;
  419. solverConstraint.m_rhsPenetration = penetrationImpulse;
  420. }
  421. solverConstraint.m_cfm = 0.f;
  422. solverConstraint.m_lowerLimit = -m_maxAppliedImpulse;
  423. solverConstraint.m_upperLimit = m_maxAppliedImpulse;
  424. }
  425. }