btRigidBody.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. /*
  2. Bullet Continuous Collision Detection and Physics Library
  3. Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
  4. This software is provided 'as-is', without any express or implied warranty.
  5. In no event will the authors be held liable for any damages arising from the use of this software.
  6. Permission is granted to anyone to use this software for any purpose,
  7. including commercial applications, and to alter it and redistribute it freely,
  8. subject to the following restrictions:
  9. 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
  10. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
  11. 3. This notice may not be removed or altered from any source distribution.
  12. */
  13. #include "btRigidBody.h"
  14. #include "bullet/BulletCollision//CollisionShapes/btConvexShape.h"
  15. #include "bullet/LinearMath/btMinMax.h"
  16. #include "bullet/LinearMath/btTransformUtil.h"
  17. #include "bullet/LinearMath/btMotionState.h"
  18. #include "bullet/BulletDynamics/ConstraintSolver/btTypedConstraint.h"
  19. #include "bullet/LinearMath/btSerializer.h"
  20. //'temporarily' global variables
  21. btScalar gDeactivationTime = btScalar(2.);
  22. bool gDisableDeactivation = false;
  23. static int uniqueId = 0;
  24. btRigidBody::btRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo)
  25. {
  26. setupRigidBody(constructionInfo);
  27. }
  28. btRigidBody::btRigidBody(btScalar mass, btMotionState *motionState, btCollisionShape *collisionShape, const btVector3 &localInertia)
  29. {
  30. btRigidBodyConstructionInfo cinfo(mass,motionState,collisionShape,localInertia);
  31. setupRigidBody(cinfo);
  32. }
  33. void btRigidBody::setupRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo)
  34. {
  35. m_internalType=CO_RIGID_BODY;
  36. m_linearVelocity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
  37. m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
  38. m_angularFactor.setValue(1,1,1);
  39. m_linearFactor.setValue(1,1,1);
  40. m_gravity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
  41. m_gravity_acceleration.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
  42. m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
  43. m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)),
  44. setDamping(constructionInfo.m_linearDamping, constructionInfo.m_angularDamping);
  45. m_linearSleepingThreshold = constructionInfo.m_linearSleepingThreshold;
  46. m_angularSleepingThreshold = constructionInfo.m_angularSleepingThreshold;
  47. m_optionalMotionState = constructionInfo.m_motionState;
  48. m_contactSolverType = 0;
  49. m_frictionSolverType = 0;
  50. m_additionalDamping = constructionInfo.m_additionalDamping;
  51. m_additionalDampingFactor = constructionInfo.m_additionalDampingFactor;
  52. m_additionalLinearDampingThresholdSqr = constructionInfo.m_additionalLinearDampingThresholdSqr;
  53. m_additionalAngularDampingThresholdSqr = constructionInfo.m_additionalAngularDampingThresholdSqr;
  54. m_additionalAngularDampingFactor = constructionInfo.m_additionalAngularDampingFactor;
  55. if (m_optionalMotionState)
  56. {
  57. m_optionalMotionState->getWorldTransform(m_worldTransform);
  58. } else
  59. {
  60. m_worldTransform = constructionInfo.m_startWorldTransform;
  61. }
  62. m_interpolationWorldTransform = m_worldTransform;
  63. m_interpolationLinearVelocity.setValue(0,0,0);
  64. m_interpolationAngularVelocity.setValue(0,0,0);
  65. //moved to btCollisionObject
  66. m_friction = constructionInfo.m_friction;
  67. m_rollingFriction = constructionInfo.m_rollingFriction;
  68. m_restitution = constructionInfo.m_restitution;
  69. setCollisionShape( constructionInfo.m_collisionShape );
  70. m_debugBodyId = uniqueId++;
  71. setMassProps(constructionInfo.m_mass, constructionInfo.m_localInertia);
  72. updateInertiaTensor();
  73. m_rigidbodyFlags = 0;
  74. m_deltaLinearVelocity.setZero();
  75. m_deltaAngularVelocity.setZero();
  76. m_invMass = m_inverseMass*m_linearFactor;
  77. m_pushVelocity.setZero();
  78. m_turnVelocity.setZero();
  79. }
  80. void btRigidBody::predictIntegratedTransform(btScalar timeStep,btTransform& predictedTransform)
  81. {
  82. btTransformUtil::integrateTransform(m_worldTransform,m_linearVelocity,m_angularVelocity,timeStep,predictedTransform);
  83. }
  84. void btRigidBody::saveKinematicState(btScalar timeStep)
  85. {
  86. //todo: clamp to some (user definable) safe minimum timestep, to limit maximum angular/linear velocities
  87. if (timeStep != btScalar(0.))
  88. {
  89. //if we use motionstate to synchronize world transforms, get the new kinematic/animated world transform
  90. if (getMotionState())
  91. getMotionState()->getWorldTransform(m_worldTransform);
  92. btVector3 linVel,angVel;
  93. btTransformUtil::calculateVelocity(m_interpolationWorldTransform,m_worldTransform,timeStep,m_linearVelocity,m_angularVelocity);
  94. m_interpolationLinearVelocity = m_linearVelocity;
  95. m_interpolationAngularVelocity = m_angularVelocity;
  96. m_interpolationWorldTransform = m_worldTransform;
  97. //printf("angular = %f %f %f\n",m_angularVelocity.getX(),m_angularVelocity.getY(),m_angularVelocity.getZ());
  98. }
  99. }
  100. void btRigidBody::getAabb(btVector3& aabbMin,btVector3& aabbMax) const
  101. {
  102. getCollisionShape()->getAabb(m_worldTransform,aabbMin,aabbMax);
  103. }
  104. void btRigidBody::setGravity(const btVector3& acceleration)
  105. {
  106. if (m_inverseMass != btScalar(0.0))
  107. {
  108. m_gravity = acceleration * (btScalar(1.0) / m_inverseMass);
  109. }
  110. m_gravity_acceleration = acceleration;
  111. }
  112. void btRigidBody::setDamping(btScalar lin_damping, btScalar ang_damping)
  113. {
  114. m_linearDamping = btClamped(lin_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
  115. m_angularDamping = btClamped(ang_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
  116. }
  117. ///applyDamping damps the velocity, using the given m_linearDamping and m_angularDamping
  118. void btRigidBody::applyDamping(btScalar timeStep)
  119. {
  120. //On new damping: see discussion/issue report here: http://code.google.com/p/bullet/issues/detail?id=74
  121. //todo: do some performance comparisons (but other parts of the engine are probably bottleneck anyway
  122. //#define USE_OLD_DAMPING_METHOD 1
  123. #ifdef USE_OLD_DAMPING_METHOD
  124. m_linearVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_linearDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
  125. m_angularVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_angularDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
  126. #else
  127. m_linearVelocity *= btPow(btScalar(1)-m_linearDamping, timeStep);
  128. m_angularVelocity *= btPow(btScalar(1)-m_angularDamping, timeStep);
  129. #endif
  130. if (m_additionalDamping)
  131. {
  132. //Additional damping can help avoiding lowpass jitter motion, help stability for ragdolls etc.
  133. //Such damping is undesirable, so once the overall simulation quality of the rigid body dynamics system has improved, this should become obsolete
  134. if ((m_angularVelocity.length2() < m_additionalAngularDampingThresholdSqr) &&
  135. (m_linearVelocity.length2() < m_additionalLinearDampingThresholdSqr))
  136. {
  137. m_angularVelocity *= m_additionalDampingFactor;
  138. m_linearVelocity *= m_additionalDampingFactor;
  139. }
  140. btScalar speed = m_linearVelocity.length();
  141. if (speed < m_linearDamping)
  142. {
  143. btScalar dampVel = btScalar(0.005);
  144. if (speed > dampVel)
  145. {
  146. btVector3 dir = m_linearVelocity.normalized();
  147. m_linearVelocity -= dir * dampVel;
  148. } else
  149. {
  150. m_linearVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
  151. }
  152. }
  153. btScalar angSpeed = m_angularVelocity.length();
  154. if (angSpeed < m_angularDamping)
  155. {
  156. btScalar angDampVel = btScalar(0.005);
  157. if (angSpeed > angDampVel)
  158. {
  159. btVector3 dir = m_angularVelocity.normalized();
  160. m_angularVelocity -= dir * angDampVel;
  161. } else
  162. {
  163. m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
  164. }
  165. }
  166. }
  167. }
  168. void btRigidBody::applyGravity()
  169. {
  170. if (isStaticOrKinematicObject())
  171. return;
  172. applyCentralForce(m_gravity);
  173. }
  174. void btRigidBody::proceedToTransform(const btTransform& newTrans)
  175. {
  176. setCenterOfMassTransform( newTrans );
  177. }
  178. void btRigidBody::setMassProps(btScalar mass, const btVector3& inertia)
  179. {
  180. if (mass == btScalar(0.))
  181. {
  182. m_collisionFlags |= btCollisionObject::CF_STATIC_OBJECT;
  183. m_inverseMass = btScalar(0.);
  184. } else
  185. {
  186. m_collisionFlags &= (~btCollisionObject::CF_STATIC_OBJECT);
  187. m_inverseMass = btScalar(1.0) / mass;
  188. }
  189. //Fg = m * a
  190. m_gravity = mass * m_gravity_acceleration;
  191. m_invInertiaLocal.setValue(inertia.x() != btScalar(0.0) ? btScalar(1.0) / inertia.x(): btScalar(0.0),
  192. inertia.y() != btScalar(0.0) ? btScalar(1.0) / inertia.y(): btScalar(0.0),
  193. inertia.z() != btScalar(0.0) ? btScalar(1.0) / inertia.z(): btScalar(0.0));
  194. m_invMass = m_linearFactor*m_inverseMass;
  195. }
  196. void btRigidBody::updateInertiaTensor()
  197. {
  198. m_invInertiaTensorWorld = m_worldTransform.getBasis().scaled(m_invInertiaLocal) * m_worldTransform.getBasis().transpose();
  199. }
  200. btVector3 btRigidBody::computeGyroscopicForce(btScalar maxGyroscopicForce) const
  201. {
  202. btVector3 inertiaLocal;
  203. inertiaLocal[0] = 1.f/getInvInertiaDiagLocal()[0];
  204. inertiaLocal[1] = 1.f/getInvInertiaDiagLocal()[1];
  205. inertiaLocal[2] = 1.f/getInvInertiaDiagLocal()[2];
  206. btMatrix3x3 inertiaTensorWorld = getWorldTransform().getBasis().scaled(inertiaLocal) * getWorldTransform().getBasis().transpose();
  207. btVector3 tmp = inertiaTensorWorld*getAngularVelocity();
  208. btVector3 gf = getAngularVelocity().cross(tmp);
  209. btScalar l2 = gf.length2();
  210. if (l2>maxGyroscopicForce*maxGyroscopicForce)
  211. {
  212. gf *= btScalar(1.)/btSqrt(l2)*maxGyroscopicForce;
  213. }
  214. return gf;
  215. }
  216. void btRigidBody::integrateVelocities(btScalar step)
  217. {
  218. if (isStaticOrKinematicObject())
  219. return;
  220. m_linearVelocity += m_totalForce * (m_inverseMass * step);
  221. m_angularVelocity += m_invInertiaTensorWorld * m_totalTorque * step;
  222. #define MAX_ANGVEL SIMD_HALF_PI
  223. /// clamp angular velocity. collision calculations will fail on higher angular velocities
  224. btScalar angvel = m_angularVelocity.length();
  225. if (angvel*step > MAX_ANGVEL)
  226. {
  227. m_angularVelocity *= (MAX_ANGVEL/step) /angvel;
  228. }
  229. }
  230. btQuaternion btRigidBody::getOrientation() const
  231. {
  232. btQuaternion orn;
  233. m_worldTransform.getBasis().getRotation(orn);
  234. return orn;
  235. }
  236. void btRigidBody::setCenterOfMassTransform(const btTransform& xform)
  237. {
  238. if (isKinematicObject())
  239. {
  240. m_interpolationWorldTransform = m_worldTransform;
  241. } else
  242. {
  243. m_interpolationWorldTransform = xform;
  244. }
  245. m_interpolationLinearVelocity = getLinearVelocity();
  246. m_interpolationAngularVelocity = getAngularVelocity();
  247. m_worldTransform = xform;
  248. updateInertiaTensor();
  249. }
  250. bool btRigidBody::checkCollideWithOverride(const btCollisionObject* co) const
  251. {
  252. const btRigidBody* otherRb = btRigidBody::upcast(co);
  253. if (!otherRb)
  254. return true;
  255. for (int i = 0; i < m_constraintRefs.size(); ++i)
  256. {
  257. const btTypedConstraint* c = m_constraintRefs[i];
  258. if (c->isEnabled())
  259. if (&c->getRigidBodyA() == otherRb || &c->getRigidBodyB() == otherRb)
  260. return false;
  261. }
  262. return true;
  263. }
  264. void btRigidBody::addConstraintRef(btTypedConstraint* c)
  265. {
  266. int index = m_constraintRefs.findLinearSearch(c);
  267. if (index == m_constraintRefs.size())
  268. m_constraintRefs.push_back(c);
  269. m_checkCollideWith = true;
  270. }
  271. void btRigidBody::removeConstraintRef(btTypedConstraint* c)
  272. {
  273. m_constraintRefs.remove(c);
  274. m_checkCollideWith = m_constraintRefs.size() > 0;
  275. }
  276. int btRigidBody::calculateSerializeBufferSize() const
  277. {
  278. int sz = sizeof(btRigidBodyData);
  279. return sz;
  280. }
  281. ///fills the dataBuffer and returns the struct name (and 0 on failure)
  282. const char* btRigidBody::serialize(void* dataBuffer, class btSerializer* serializer) const
  283. {
  284. btRigidBodyData* rbd = (btRigidBodyData*) dataBuffer;
  285. btCollisionObject::serialize(&rbd->m_collisionObjectData, serializer);
  286. m_invInertiaTensorWorld.serialize(rbd->m_invInertiaTensorWorld);
  287. m_linearVelocity.serialize(rbd->m_linearVelocity);
  288. m_angularVelocity.serialize(rbd->m_angularVelocity);
  289. rbd->m_inverseMass = m_inverseMass;
  290. m_angularFactor.serialize(rbd->m_angularFactor);
  291. m_linearFactor.serialize(rbd->m_linearFactor);
  292. m_gravity.serialize(rbd->m_gravity);
  293. m_gravity_acceleration.serialize(rbd->m_gravity_acceleration);
  294. m_invInertiaLocal.serialize(rbd->m_invInertiaLocal);
  295. m_totalForce.serialize(rbd->m_totalForce);
  296. m_totalTorque.serialize(rbd->m_totalTorque);
  297. rbd->m_linearDamping = m_linearDamping;
  298. rbd->m_angularDamping = m_angularDamping;
  299. rbd->m_additionalDamping = m_additionalDamping;
  300. rbd->m_additionalDampingFactor = m_additionalDampingFactor;
  301. rbd->m_additionalLinearDampingThresholdSqr = m_additionalLinearDampingThresholdSqr;
  302. rbd->m_additionalAngularDampingThresholdSqr = m_additionalAngularDampingThresholdSqr;
  303. rbd->m_additionalAngularDampingFactor = m_additionalAngularDampingFactor;
  304. rbd->m_linearSleepingThreshold=m_linearSleepingThreshold;
  305. rbd->m_angularSleepingThreshold = m_angularSleepingThreshold;
  306. return btRigidBodyDataName;
  307. }
  308. void btRigidBody::serializeSingleObject(class btSerializer* serializer) const
  309. {
  310. btChunk* chunk = serializer->allocate(calculateSerializeBufferSize(),1);
  311. const char* structType = serialize(chunk->m_oldPtr, serializer);
  312. serializer->finalizeChunk(chunk,structType,BT_RIGIDBODY_CODE,(void*)this);
  313. }