btVoronoiSimplexSolver.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609
  1. /*
  2. Bullet Continuous Collision Detection and Physics Library
  3. Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
  4. This software is provided 'as-is', without any express or implied warranty.
  5. In no event will the authors be held liable for any damages arising from the use of this software.
  6. Permission is granted to anyone to use this software for any purpose,
  7. including commercial applications, and to alter it and redistribute it freely,
  8. subject to the following restrictions:
  9. 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
  10. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
  11. 3. This notice may not be removed or altered from any source distribution.
  12. Elsevier CDROM license agreements grants nonexclusive license to use the software
  13. for any purpose, commercial or non-commercial as long as the following credit is included
  14. identifying the original source of the software:
  15. Parts of the source are "from the book Real-Time Collision Detection by
  16. Christer Ericson, published by Morgan Kaufmann Publishers,
  17. (c) 2005 Elsevier Inc."
  18. */
  19. #include "btVoronoiSimplexSolver.h"
  20. #define VERTA 0
  21. #define VERTB 1
  22. #define VERTC 2
  23. #define VERTD 3
  24. #define CATCH_DEGENERATE_TETRAHEDRON 1
  25. void btVoronoiSimplexSolver::removeVertex(int index)
  26. {
  27. btAssert(m_numVertices>0);
  28. m_numVertices--;
  29. m_simplexVectorW[index] = m_simplexVectorW[m_numVertices];
  30. m_simplexPointsP[index] = m_simplexPointsP[m_numVertices];
  31. m_simplexPointsQ[index] = m_simplexPointsQ[m_numVertices];
  32. }
  33. void btVoronoiSimplexSolver::reduceVertices (const btUsageBitfield& usedVerts)
  34. {
  35. if ((numVertices() >= 4) && (!usedVerts.usedVertexD))
  36. removeVertex(3);
  37. if ((numVertices() >= 3) && (!usedVerts.usedVertexC))
  38. removeVertex(2);
  39. if ((numVertices() >= 2) && (!usedVerts.usedVertexB))
  40. removeVertex(1);
  41. if ((numVertices() >= 1) && (!usedVerts.usedVertexA))
  42. removeVertex(0);
  43. }
  44. //clear the simplex, remove all the vertices
  45. void btVoronoiSimplexSolver::reset()
  46. {
  47. m_cachedValidClosest = false;
  48. m_numVertices = 0;
  49. m_needsUpdate = true;
  50. m_lastW = btVector3(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));
  51. m_cachedBC.reset();
  52. }
  53. //add a vertex
  54. void btVoronoiSimplexSolver::addVertex(const btVector3& w, const btVector3& p, const btVector3& q)
  55. {
  56. m_lastW = w;
  57. m_needsUpdate = true;
  58. m_simplexVectorW[m_numVertices] = w;
  59. m_simplexPointsP[m_numVertices] = p;
  60. m_simplexPointsQ[m_numVertices] = q;
  61. m_numVertices++;
  62. }
  63. bool btVoronoiSimplexSolver::updateClosestVectorAndPoints()
  64. {
  65. if (m_needsUpdate)
  66. {
  67. m_cachedBC.reset();
  68. m_needsUpdate = false;
  69. switch (numVertices())
  70. {
  71. case 0:
  72. m_cachedValidClosest = false;
  73. break;
  74. case 1:
  75. {
  76. m_cachedP1 = m_simplexPointsP[0];
  77. m_cachedP2 = m_simplexPointsQ[0];
  78. m_cachedV = m_cachedP1-m_cachedP2; //== m_simplexVectorW[0]
  79. m_cachedBC.reset();
  80. m_cachedBC.setBarycentricCoordinates(btScalar(1.),btScalar(0.),btScalar(0.),btScalar(0.));
  81. m_cachedValidClosest = m_cachedBC.isValid();
  82. break;
  83. };
  84. case 2:
  85. {
  86. //closest point origin from line segment
  87. const btVector3& from = m_simplexVectorW[0];
  88. const btVector3& to = m_simplexVectorW[1];
  89. btVector3 nearest;
  90. btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.));
  91. btVector3 diff = p - from;
  92. btVector3 v = to - from;
  93. btScalar t = v.dot(diff);
  94. if (t > 0) {
  95. btScalar dotVV = v.dot(v);
  96. if (t < dotVV) {
  97. t /= dotVV;
  98. diff -= t*v;
  99. m_cachedBC.m_usedVertices.usedVertexA = true;
  100. m_cachedBC.m_usedVertices.usedVertexB = true;
  101. } else {
  102. t = 1;
  103. diff -= v;
  104. //reduce to 1 point
  105. m_cachedBC.m_usedVertices.usedVertexB = true;
  106. }
  107. } else
  108. {
  109. t = 0;
  110. //reduce to 1 point
  111. m_cachedBC.m_usedVertices.usedVertexA = true;
  112. }
  113. m_cachedBC.setBarycentricCoordinates(1-t,t);
  114. nearest = from + t*v;
  115. m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]);
  116. m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]);
  117. m_cachedV = m_cachedP1 - m_cachedP2;
  118. reduceVertices(m_cachedBC.m_usedVertices);
  119. m_cachedValidClosest = m_cachedBC.isValid();
  120. break;
  121. }
  122. case 3:
  123. {
  124. //closest point origin from triangle
  125. btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.));
  126. const btVector3& a = m_simplexVectorW[0];
  127. const btVector3& b = m_simplexVectorW[1];
  128. const btVector3& c = m_simplexVectorW[2];
  129. closestPtPointTriangle(p,a,b,c,m_cachedBC);
  130. m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
  131. m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
  132. m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2];
  133. m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
  134. m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
  135. m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2];
  136. m_cachedV = m_cachedP1-m_cachedP2;
  137. reduceVertices (m_cachedBC.m_usedVertices);
  138. m_cachedValidClosest = m_cachedBC.isValid();
  139. break;
  140. }
  141. case 4:
  142. {
  143. btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.));
  144. const btVector3& a = m_simplexVectorW[0];
  145. const btVector3& b = m_simplexVectorW[1];
  146. const btVector3& c = m_simplexVectorW[2];
  147. const btVector3& d = m_simplexVectorW[3];
  148. bool hasSeperation = closestPtPointTetrahedron(p,a,b,c,d,m_cachedBC);
  149. if (hasSeperation)
  150. {
  151. m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
  152. m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
  153. m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] +
  154. m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3];
  155. m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
  156. m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
  157. m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] +
  158. m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3];
  159. m_cachedV = m_cachedP1-m_cachedP2;
  160. reduceVertices (m_cachedBC.m_usedVertices);
  161. } else
  162. {
  163. // printf("sub distance got penetration\n");
  164. if (m_cachedBC.m_degenerate)
  165. {
  166. m_cachedValidClosest = false;
  167. } else
  168. {
  169. m_cachedValidClosest = true;
  170. //degenerate case == false, penetration = true + zero
  171. m_cachedV.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
  172. }
  173. break;
  174. }
  175. m_cachedValidClosest = m_cachedBC.isValid();
  176. //closest point origin from tetrahedron
  177. break;
  178. }
  179. default:
  180. {
  181. m_cachedValidClosest = false;
  182. }
  183. };
  184. }
  185. return m_cachedValidClosest;
  186. }
  187. //return/calculate the closest vertex
  188. bool btVoronoiSimplexSolver::closest(btVector3& v)
  189. {
  190. bool succes = updateClosestVectorAndPoints();
  191. v = m_cachedV;
  192. return succes;
  193. }
  194. btScalar btVoronoiSimplexSolver::maxVertex()
  195. {
  196. int i, numverts = numVertices();
  197. btScalar maxV = btScalar(0.);
  198. for (i=0;i<numverts;i++)
  199. {
  200. btScalar curLen2 = m_simplexVectorW[i].length2();
  201. if (maxV < curLen2)
  202. maxV = curLen2;
  203. }
  204. return maxV;
  205. }
  206. //return the current simplex
  207. int btVoronoiSimplexSolver::getSimplex(btVector3 *pBuf, btVector3 *qBuf, btVector3 *yBuf) const
  208. {
  209. int i;
  210. for (i=0;i<numVertices();i++)
  211. {
  212. yBuf[i] = m_simplexVectorW[i];
  213. pBuf[i] = m_simplexPointsP[i];
  214. qBuf[i] = m_simplexPointsQ[i];
  215. }
  216. return numVertices();
  217. }
  218. bool btVoronoiSimplexSolver::inSimplex(const btVector3& w)
  219. {
  220. bool found = false;
  221. int i, numverts = numVertices();
  222. //btScalar maxV = btScalar(0.);
  223. //w is in the current (reduced) simplex
  224. for (i=0;i<numverts;i++)
  225. {
  226. #ifdef BT_USE_EQUAL_VERTEX_THRESHOLD
  227. if ( m_simplexVectorW[i].distance2(w) <= m_equalVertexThreshold)
  228. #else
  229. if (m_simplexVectorW[i] == w)
  230. #endif
  231. found = true;
  232. }
  233. //check in case lastW is already removed
  234. if (w == m_lastW)
  235. return true;
  236. return found;
  237. }
  238. void btVoronoiSimplexSolver::backup_closest(btVector3& v)
  239. {
  240. v = m_cachedV;
  241. }
  242. bool btVoronoiSimplexSolver::emptySimplex() const
  243. {
  244. return (numVertices() == 0);
  245. }
  246. void btVoronoiSimplexSolver::compute_points(btVector3& p1, btVector3& p2)
  247. {
  248. updateClosestVectorAndPoints();
  249. p1 = m_cachedP1;
  250. p2 = m_cachedP2;
  251. }
  252. bool btVoronoiSimplexSolver::closestPtPointTriangle(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c,btSubSimplexClosestResult& result)
  253. {
  254. result.m_usedVertices.reset();
  255. // Check if P in vertex region outside A
  256. btVector3 ab = b - a;
  257. btVector3 ac = c - a;
  258. btVector3 ap = p - a;
  259. btScalar d1 = ab.dot(ap);
  260. btScalar d2 = ac.dot(ap);
  261. if (d1 <= btScalar(0.0) && d2 <= btScalar(0.0))
  262. {
  263. result.m_closestPointOnSimplex = a;
  264. result.m_usedVertices.usedVertexA = true;
  265. result.setBarycentricCoordinates(1,0,0);
  266. return true;// a; // barycentric coordinates (1,0,0)
  267. }
  268. // Check if P in vertex region outside B
  269. btVector3 bp = p - b;
  270. btScalar d3 = ab.dot(bp);
  271. btScalar d4 = ac.dot(bp);
  272. if (d3 >= btScalar(0.0) && d4 <= d3)
  273. {
  274. result.m_closestPointOnSimplex = b;
  275. result.m_usedVertices.usedVertexB = true;
  276. result.setBarycentricCoordinates(0,1,0);
  277. return true; // b; // barycentric coordinates (0,1,0)
  278. }
  279. // Check if P in edge region of AB, if so return projection of P onto AB
  280. btScalar vc = d1*d4 - d3*d2;
  281. if (vc <= btScalar(0.0) && d1 >= btScalar(0.0) && d3 <= btScalar(0.0)) {
  282. btScalar v = d1 / (d1 - d3);
  283. result.m_closestPointOnSimplex = a + v * ab;
  284. result.m_usedVertices.usedVertexA = true;
  285. result.m_usedVertices.usedVertexB = true;
  286. result.setBarycentricCoordinates(1-v,v,0);
  287. return true;
  288. //return a + v * ab; // barycentric coordinates (1-v,v,0)
  289. }
  290. // Check if P in vertex region outside C
  291. btVector3 cp = p - c;
  292. btScalar d5 = ab.dot(cp);
  293. btScalar d6 = ac.dot(cp);
  294. if (d6 >= btScalar(0.0) && d5 <= d6)
  295. {
  296. result.m_closestPointOnSimplex = c;
  297. result.m_usedVertices.usedVertexC = true;
  298. result.setBarycentricCoordinates(0,0,1);
  299. return true;//c; // barycentric coordinates (0,0,1)
  300. }
  301. // Check if P in edge region of AC, if so return projection of P onto AC
  302. btScalar vb = d5*d2 - d1*d6;
  303. if (vb <= btScalar(0.0) && d2 >= btScalar(0.0) && d6 <= btScalar(0.0)) {
  304. btScalar w = d2 / (d2 - d6);
  305. result.m_closestPointOnSimplex = a + w * ac;
  306. result.m_usedVertices.usedVertexA = true;
  307. result.m_usedVertices.usedVertexC = true;
  308. result.setBarycentricCoordinates(1-w,0,w);
  309. return true;
  310. //return a + w * ac; // barycentric coordinates (1-w,0,w)
  311. }
  312. // Check if P in edge region of BC, if so return projection of P onto BC
  313. btScalar va = d3*d6 - d5*d4;
  314. if (va <= btScalar(0.0) && (d4 - d3) >= btScalar(0.0) && (d5 - d6) >= btScalar(0.0)) {
  315. btScalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
  316. result.m_closestPointOnSimplex = b + w * (c - b);
  317. result.m_usedVertices.usedVertexB = true;
  318. result.m_usedVertices.usedVertexC = true;
  319. result.setBarycentricCoordinates(0,1-w,w);
  320. return true;
  321. // return b + w * (c - b); // barycentric coordinates (0,1-w,w)
  322. }
  323. // P inside face region. Compute Q through its barycentric coordinates (u,v,w)
  324. btScalar denom = btScalar(1.0) / (va + vb + vc);
  325. btScalar v = vb * denom;
  326. btScalar w = vc * denom;
  327. result.m_closestPointOnSimplex = a + ab * v + ac * w;
  328. result.m_usedVertices.usedVertexA = true;
  329. result.m_usedVertices.usedVertexB = true;
  330. result.m_usedVertices.usedVertexC = true;
  331. result.setBarycentricCoordinates(1-v-w,v,w);
  332. return true;
  333. // return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = btScalar(1.0) - v - w
  334. }
  335. /// Test if point p and d lie on opposite sides of plane through abc
  336. int btVoronoiSimplexSolver::pointOutsideOfPlane(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d)
  337. {
  338. btVector3 normal = (b-a).cross(c-a);
  339. btScalar signp = (p - a).dot(normal); // [AP AB AC]
  340. btScalar signd = (d - a).dot( normal); // [AD AB AC]
  341. #ifdef CATCH_DEGENERATE_TETRAHEDRON
  342. #ifdef BT_USE_DOUBLE_PRECISION
  343. if (signd * signd < (btScalar(1e-8) * btScalar(1e-8)))
  344. {
  345. return -1;
  346. }
  347. #else
  348. if (signd * signd < (btScalar(1e-4) * btScalar(1e-4)))
  349. {
  350. // printf("affine dependent/degenerate\n");//
  351. return -1;
  352. }
  353. #endif
  354. #endif
  355. // Points on opposite sides if expression signs are opposite
  356. return signp * signd < btScalar(0.);
  357. }
  358. bool btVoronoiSimplexSolver::closestPtPointTetrahedron(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d, btSubSimplexClosestResult& finalResult)
  359. {
  360. btSubSimplexClosestResult tempResult;
  361. // Start out assuming point inside all halfspaces, so closest to itself
  362. finalResult.m_closestPointOnSimplex = p;
  363. finalResult.m_usedVertices.reset();
  364. finalResult.m_usedVertices.usedVertexA = true;
  365. finalResult.m_usedVertices.usedVertexB = true;
  366. finalResult.m_usedVertices.usedVertexC = true;
  367. finalResult.m_usedVertices.usedVertexD = true;
  368. int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d);
  369. int pointOutsideACD = pointOutsideOfPlane(p, a, c, d, b);
  370. int pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c);
  371. int pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a);
  372. if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0)
  373. {
  374. finalResult.m_degenerate = true;
  375. return false;
  376. }
  377. if (!pointOutsideABC && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC)
  378. {
  379. return false;
  380. }
  381. btScalar bestSqDist = FLT_MAX;
  382. // If point outside face abc then compute closest point on abc
  383. if (pointOutsideABC)
  384. {
  385. closestPtPointTriangle(p, a, b, c,tempResult);
  386. btVector3 q = tempResult.m_closestPointOnSimplex;
  387. btScalar sqDist = (q - p).dot( q - p);
  388. // Update best closest point if (squared) distance is less than current best
  389. if (sqDist < bestSqDist) {
  390. bestSqDist = sqDist;
  391. finalResult.m_closestPointOnSimplex = q;
  392. //convert result bitmask!
  393. finalResult.m_usedVertices.reset();
  394. finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
  395. finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexB;
  396. finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
  397. finalResult.setBarycentricCoordinates(
  398. tempResult.m_barycentricCoords[VERTA],
  399. tempResult.m_barycentricCoords[VERTB],
  400. tempResult.m_barycentricCoords[VERTC],
  401. 0
  402. );
  403. }
  404. }
  405. // Repeat test for face acd
  406. if (pointOutsideACD)
  407. {
  408. closestPtPointTriangle(p, a, c, d,tempResult);
  409. btVector3 q = tempResult.m_closestPointOnSimplex;
  410. //convert result bitmask!
  411. btScalar sqDist = (q - p).dot( q - p);
  412. if (sqDist < bestSqDist)
  413. {
  414. bestSqDist = sqDist;
  415. finalResult.m_closestPointOnSimplex = q;
  416. finalResult.m_usedVertices.reset();
  417. finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
  418. finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexB;
  419. finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexC;
  420. finalResult.setBarycentricCoordinates(
  421. tempResult.m_barycentricCoords[VERTA],
  422. 0,
  423. tempResult.m_barycentricCoords[VERTB],
  424. tempResult.m_barycentricCoords[VERTC]
  425. );
  426. }
  427. }
  428. // Repeat test for face adb
  429. if (pointOutsideADB)
  430. {
  431. closestPtPointTriangle(p, a, d, b,tempResult);
  432. btVector3 q = tempResult.m_closestPointOnSimplex;
  433. //convert result bitmask!
  434. btScalar sqDist = (q - p).dot( q - p);
  435. if (sqDist < bestSqDist)
  436. {
  437. bestSqDist = sqDist;
  438. finalResult.m_closestPointOnSimplex = q;
  439. finalResult.m_usedVertices.reset();
  440. finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
  441. finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexC;
  442. finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
  443. finalResult.setBarycentricCoordinates(
  444. tempResult.m_barycentricCoords[VERTA],
  445. tempResult.m_barycentricCoords[VERTC],
  446. 0,
  447. tempResult.m_barycentricCoords[VERTB]
  448. );
  449. }
  450. }
  451. // Repeat test for face bdc
  452. if (pointOutsideBDC)
  453. {
  454. closestPtPointTriangle(p, b, d, c,tempResult);
  455. btVector3 q = tempResult.m_closestPointOnSimplex;
  456. //convert result bitmask!
  457. btScalar sqDist = (q - p).dot( q - p);
  458. if (sqDist < bestSqDist)
  459. {
  460. bestSqDist = sqDist;
  461. finalResult.m_closestPointOnSimplex = q;
  462. finalResult.m_usedVertices.reset();
  463. //
  464. finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexA;
  465. finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
  466. finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
  467. finalResult.setBarycentricCoordinates(
  468. 0,
  469. tempResult.m_barycentricCoords[VERTA],
  470. tempResult.m_barycentricCoords[VERTC],
  471. tempResult.m_barycentricCoords[VERTB]
  472. );
  473. }
  474. }
  475. //help! we ended up full !
  476. if (finalResult.m_usedVertices.usedVertexA &&
  477. finalResult.m_usedVertices.usedVertexB &&
  478. finalResult.m_usedVertices.usedVertexC &&
  479. finalResult.m_usedVertices.usedVertexD)
  480. {
  481. return true;
  482. }
  483. return true;
  484. }