123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539 |
- /*
- * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
- *
- * This software is provided 'as-is', without any express or implied
- * warranty. In no event will the authors be held liable for any damages
- * arising from the use of this software.
- * Permission is granted to anyone to use this software for any purpose,
- * including commercial applications, and to alter it and redistribute it
- * freely, subject to the following restrictions:
- * 1. The origin of this software must not be misrepresented; you must not
- * claim that you wrote the original software. If you use this software
- * in a product, an acknowledgment in the product documentation would be
- * appreciated but is not required.
- * 2. Altered source versions must be plainly marked as such, and must not be
- * misrepresented as being the original software.
- * 3. This notice may not be removed or altered from any source distribution.
- */
- #include <Box2D/Collision/b2Distance.h>
- #include <Box2D/Dynamics/b2Island.h>
- #include <Box2D/Dynamics/b2Body.h>
- #include <Box2D/Dynamics/b2Fixture.h>
- #include <Box2D/Dynamics/b2World.h>
- #include <Box2D/Dynamics/Contacts/b2Contact.h>
- #include <Box2D/Dynamics/Contacts/b2ContactSolver.h>
- #include <Box2D/Dynamics/Joints/b2Joint.h>
- #include <Box2D/Common/b2StackAllocator.h>
- #include <Box2D/Common/b2Timer.h>
- /*
- Position Correction Notes
- =========================
- I tried the several algorithms for position correction of the 2D revolute joint.
- I looked at these systems:
- - simple pendulum (1m diameter sphere on massless 5m stick) with initial angular velocity of 100 rad/s.
- - suspension bridge with 30 1m long planks of length 1m.
- - multi-link chain with 30 1m long links.
- Here are the algorithms:
- Baumgarte - A fraction of the position error is added to the velocity error. There is no
- separate position solver.
- Pseudo Velocities - After the velocity solver and position integration,
- the position error, Jacobian, and effective mass are recomputed. Then
- the velocity constraints are solved with pseudo velocities and a fraction
- of the position error is added to the pseudo velocity error. The pseudo
- velocities are initialized to zero and there is no warm-starting. After
- the position solver, the pseudo velocities are added to the positions.
- This is also called the First Order World method or the Position LCP method.
- Modified Nonlinear Gauss-Seidel (NGS) - Like Pseudo Velocities except the
- position error is re-computed for each constraint and the positions are updated
- after the constraint is solved. The radius vectors (aka Jacobians) are
- re-computed too (otherwise the algorithm has horrible instability). The pseudo
- velocity states are not needed because they are effectively zero at the beginning
- of each iteration. Since we have the current position error, we allow the
- iterations to terminate early if the error becomes smaller than b2_linearSlop.
- Full NGS or just NGS - Like Modified NGS except the effective mass are re-computed
- each time a constraint is solved.
- Here are the results:
- Baumgarte - this is the cheapest algorithm but it has some stability problems,
- especially with the bridge. The chain links separate easily close to the root
- and they jitter as they struggle to pull together. This is one of the most common
- methods in the field. The big drawback is that the position correction artificially
- affects the momentum, thus leading to instabilities and false bounce. I used a
- bias factor of 0.2. A larger bias factor makes the bridge less stable, a smaller
- factor makes joints and contacts more spongy.
- Pseudo Velocities - the is more stable than the Baumgarte method. The bridge is
- stable. However, joints still separate with large angular velocities. Drag the
- simple pendulum in a circle quickly and the joint will separate. The chain separates
- easily and does not recover. I used a bias factor of 0.2. A larger value lead to
- the bridge collapsing when a heavy cube drops on it.
- Modified NGS - this algorithm is better in some ways than Baumgarte and Pseudo
- Velocities, but in other ways it is worse. The bridge and chain are much more
- stable, but the simple pendulum goes unstable at high angular velocities.
- Full NGS - stable in all tests. The joints display good stiffness. The bridge
- still sags, but this is better than infinite forces.
- Recommendations
- Pseudo Velocities are not really worthwhile because the bridge and chain cannot
- recover from joint separation. In other cases the benefit over Baumgarte is small.
- Modified NGS is not a robust method for the revolute joint due to the violent
- instability seen in the simple pendulum. Perhaps it is viable with other constraint
- types, especially scalar constraints where the effective mass is a scalar.
- This leaves Baumgarte and Full NGS. Baumgarte has small, but manageable instabilities
- and is very fast. I don't think we can escape Baumgarte, especially in highly
- demanding cases where high constraint fidelity is not needed.
- Full NGS is robust and easy on the eyes. I recommend this as an option for
- higher fidelity simulation and certainly for suspension bridges and long chains.
- Full NGS might be a good choice for ragdolls, especially motorized ragdolls where
- joint separation can be problematic. The number of NGS iterations can be reduced
- for better performance without harming robustness much.
- Each joint in a can be handled differently in the position solver. So I recommend
- a system where the user can select the algorithm on a per joint basis. I would
- probably default to the slower Full NGS and let the user select the faster
- Baumgarte method in performance critical scenarios.
- */
- /*
- Cache Performance
- The Box2D solvers are dominated by cache misses. Data structures are designed
- to increase the number of cache hits. Much of misses are due to random access
- to body data. The constraint structures are iterated over linearly, which leads
- to few cache misses.
- The bodies are not accessed during iteration. Instead read only data, such as
- the mass values are stored with the constraints. The mutable data are the constraint
- impulses and the bodies velocities/positions. The impulses are held inside the
- constraint structures. The body velocities/positions are held in compact, temporary
- arrays to increase the number of cache hits. Linear and angular velocity are
- stored in a single array since multiple arrays lead to multiple misses.
- */
- /*
- 2D Rotation
- R = [cos(theta) -sin(theta)]
- [sin(theta) cos(theta) ]
- thetaDot = omega
- Let q1 = cos(theta), q2 = sin(theta).
- R = [q1 -q2]
- [q2 q1]
- q1Dot = -thetaDot * q2
- q2Dot = thetaDot * q1
- q1_new = q1_old - dt * w * q2
- q2_new = q2_old + dt * w * q1
- then normalize.
- This might be faster than computing sin+cos.
- However, we can compute sin+cos of the same angle fast.
- */
- b2Island::b2Island(
- int32 bodyCapacity,
- int32 contactCapacity,
- int32 jointCapacity,
- b2StackAllocator* allocator,
- b2ContactListener* listener)
- {
- m_bodyCapacity = bodyCapacity;
- m_contactCapacity = contactCapacity;
- m_jointCapacity = jointCapacity;
- m_bodyCount = 0;
- m_contactCount = 0;
- m_jointCount = 0;
- m_allocator = allocator;
- m_listener = listener;
- m_bodies = (b2Body**)m_allocator->Allocate(bodyCapacity * sizeof(b2Body*));
- m_contacts = (b2Contact**)m_allocator->Allocate(contactCapacity * sizeof(b2Contact*));
- m_joints = (b2Joint**)m_allocator->Allocate(jointCapacity * sizeof(b2Joint*));
- m_velocities = (b2Velocity*)m_allocator->Allocate(m_bodyCapacity * sizeof(b2Velocity));
- m_positions = (b2Position*)m_allocator->Allocate(m_bodyCapacity * sizeof(b2Position));
- }
- b2Island::~b2Island()
- {
- // Warning: the order should reverse the constructor order.
- m_allocator->Free(m_positions);
- m_allocator->Free(m_velocities);
- m_allocator->Free(m_joints);
- m_allocator->Free(m_contacts);
- m_allocator->Free(m_bodies);
- }
- void b2Island::Solve(b2Profile* profile, const b2TimeStep& step, const b2Vec2& gravity, bool allowSleep)
- {
- b2Timer timer;
- float32 h = step.dt;
- // Integrate velocities and apply damping. Initialize the body state.
- for (int32 i = 0; i < m_bodyCount; ++i)
- {
- b2Body* b = m_bodies[i];
- b2Vec2 c = b->m_sweep.c;
- float32 a = b->m_sweep.a;
- b2Vec2 v = b->m_linearVelocity;
- float32 w = b->m_angularVelocity;
- // Store positions for continuous collision.
- b->m_sweep.c0 = b->m_sweep.c;
- b->m_sweep.a0 = b->m_sweep.a;
- if (b->m_type == b2_dynamicBody)
- {
- // Integrate velocities.
- v += h * (b->m_gravityScale * gravity + b->m_invMass * b->m_force);
- w += h * b->m_invI * b->m_torque;
- // Apply damping.
- // ODE: dv/dt + c * v = 0
- // Solution: v(t) = v0 * exp(-c * t)
- // Time step: v(t + dt) = v0 * exp(-c * (t + dt)) = v0 * exp(-c * t) * exp(-c * dt) = v * exp(-c * dt)
- // v2 = exp(-c * dt) * v1
- // Pade approximation:
- // v2 = v1 * 1 / (1 + c * dt)
- v *= 1.0f / (1.0f + h * b->m_linearDamping);
- w *= 1.0f / (1.0f + h * b->m_angularDamping);
- }
- m_positions[i].c = c;
- m_positions[i].a = a;
- m_velocities[i].v = v;
- m_velocities[i].w = w;
- }
- timer.Reset();
- // Solver data
- b2SolverData solverData;
- solverData.step = step;
- solverData.positions = m_positions;
- solverData.velocities = m_velocities;
- // Initialize velocity constraints.
- b2ContactSolverDef contactSolverDef;
- contactSolverDef.step = step;
- contactSolverDef.contacts = m_contacts;
- contactSolverDef.count = m_contactCount;
- contactSolverDef.positions = m_positions;
- contactSolverDef.velocities = m_velocities;
- contactSolverDef.allocator = m_allocator;
- b2ContactSolver contactSolver(&contactSolverDef);
- contactSolver.InitializeVelocityConstraints();
- if (step.warmStarting)
- {
- contactSolver.WarmStart();
- }
-
- for (int32 i = 0; i < m_jointCount; ++i)
- {
- m_joints[i]->InitVelocityConstraints(solverData);
- }
- profile->solveInit = timer.GetMilliseconds();
- // Solve velocity constraints
- timer.Reset();
- for (int32 i = 0; i < step.velocityIterations; ++i)
- {
- for (int32 j = 0; j < m_jointCount; ++j)
- {
- m_joints[j]->SolveVelocityConstraints(solverData);
- }
- contactSolver.SolveVelocityConstraints();
- }
- // Store impulses for warm starting
- contactSolver.StoreImpulses();
- profile->solveVelocity = timer.GetMilliseconds();
- // Integrate positions
- for (int32 i = 0; i < m_bodyCount; ++i)
- {
- b2Vec2 c = m_positions[i].c;
- float32 a = m_positions[i].a;
- b2Vec2 v = m_velocities[i].v;
- float32 w = m_velocities[i].w;
- // Check for large velocities
- b2Vec2 translation = h * v;
- if (b2Dot(translation, translation) > b2_maxTranslationSquared)
- {
- float32 ratio = b2_maxTranslation / translation.Length();
- v *= ratio;
- }
- float32 rotation = h * w;
- if (rotation * rotation > b2_maxRotationSquared)
- {
- float32 ratio = b2_maxRotation / b2Abs(rotation);
- w *= ratio;
- }
- // Integrate
- c += h * v;
- a += h * w;
- m_positions[i].c = c;
- m_positions[i].a = a;
- m_velocities[i].v = v;
- m_velocities[i].w = w;
- }
- // Solve position constraints
- timer.Reset();
- bool positionSolved = false;
- for (int32 i = 0; i < step.positionIterations; ++i)
- {
- bool contactsOkay = contactSolver.SolvePositionConstraints();
- bool jointsOkay = true;
- for (int32 i = 0; i < m_jointCount; ++i)
- {
- bool jointOkay = m_joints[i]->SolvePositionConstraints(solverData);
- jointsOkay = jointsOkay && jointOkay;
- }
- if (contactsOkay && jointsOkay)
- {
- // Exit early if the position errors are small.
- positionSolved = true;
- break;
- }
- }
- // Copy state buffers back to the bodies
- for (int32 i = 0; i < m_bodyCount; ++i)
- {
- b2Body* body = m_bodies[i];
- body->m_sweep.c = m_positions[i].c;
- body->m_sweep.a = m_positions[i].a;
- body->m_linearVelocity = m_velocities[i].v;
- body->m_angularVelocity = m_velocities[i].w;
- body->SynchronizeTransform();
- }
- profile->solvePosition = timer.GetMilliseconds();
- Report(contactSolver.m_velocityConstraints);
- if (allowSleep)
- {
- float32 minSleepTime = b2_maxFloat;
- const float32 linTolSqr = b2_linearSleepTolerance * b2_linearSleepTolerance;
- const float32 angTolSqr = b2_angularSleepTolerance * b2_angularSleepTolerance;
- for (int32 i = 0; i < m_bodyCount; ++i)
- {
- b2Body* b = m_bodies[i];
- if (b->GetType() == b2_staticBody)
- {
- continue;
- }
- if ((b->m_flags & b2Body::e_autoSleepFlag) == 0 ||
- b->m_angularVelocity * b->m_angularVelocity > angTolSqr ||
- b2Dot(b->m_linearVelocity, b->m_linearVelocity) > linTolSqr)
- {
- b->m_sleepTime = 0.0f;
- minSleepTime = 0.0f;
- }
- else
- {
- b->m_sleepTime += h;
- minSleepTime = b2Min(minSleepTime, b->m_sleepTime);
- }
- }
- if (minSleepTime >= b2_timeToSleep && positionSolved)
- {
- for (int32 i = 0; i < m_bodyCount; ++i)
- {
- b2Body* b = m_bodies[i];
- b->SetAwake(false);
- }
- }
- }
- }
- void b2Island::SolveTOI(const b2TimeStep& subStep, int32 toiIndexA, int32 toiIndexB)
- {
- b2Assert(toiIndexA < m_bodyCount);
- b2Assert(toiIndexB < m_bodyCount);
- // Initialize the body state.
- for (int32 i = 0; i < m_bodyCount; ++i)
- {
- b2Body* b = m_bodies[i];
- m_positions[i].c = b->m_sweep.c;
- m_positions[i].a = b->m_sweep.a;
- m_velocities[i].v = b->m_linearVelocity;
- m_velocities[i].w = b->m_angularVelocity;
- }
- b2ContactSolverDef contactSolverDef;
- contactSolverDef.contacts = m_contacts;
- contactSolverDef.count = m_contactCount;
- contactSolverDef.allocator = m_allocator;
- contactSolverDef.step = subStep;
- contactSolverDef.positions = m_positions;
- contactSolverDef.velocities = m_velocities;
- b2ContactSolver contactSolver(&contactSolverDef);
- // Solve position constraints.
- for (int32 i = 0; i < subStep.positionIterations; ++i)
- {
- bool contactsOkay = contactSolver.SolveTOIPositionConstraints(toiIndexA, toiIndexB);
- if (contactsOkay)
- {
- break;
- }
- }
- #if 0
- // Is the new position really safe?
- for (int32 i = 0; i < m_contactCount; ++i)
- {
- b2Contact* c = m_contacts[i];
- b2Fixture* fA = c->GetFixtureA();
- b2Fixture* fB = c->GetFixtureB();
- b2Body* bA = fA->GetBody();
- b2Body* bB = fB->GetBody();
- int32 indexA = c->GetChildIndexA();
- int32 indexB = c->GetChildIndexB();
- b2DistanceInput input;
- input.proxyA.Set(fA->GetShape(), indexA);
- input.proxyB.Set(fB->GetShape(), indexB);
- input.transformA = bA->GetTransform();
- input.transformB = bB->GetTransform();
- input.useRadii = false;
- b2DistanceOutput output;
- b2SimplexCache cache;
- cache.count = 0;
- b2Distance(&output, &cache, &input);
- if (output.distance == 0 || cache.count == 3)
- {
- cache.count += 0;
- }
- }
- #endif
- // Leap of faith to new safe state.
- m_bodies[toiIndexA]->m_sweep.c0 = m_positions[toiIndexA].c;
- m_bodies[toiIndexA]->m_sweep.a0 = m_positions[toiIndexA].a;
- m_bodies[toiIndexB]->m_sweep.c0 = m_positions[toiIndexB].c;
- m_bodies[toiIndexB]->m_sweep.a0 = m_positions[toiIndexB].a;
- // No warm starting is needed for TOI events because warm
- // starting impulses were applied in the discrete solver.
- contactSolver.InitializeVelocityConstraints();
- // Solve velocity constraints.
- for (int32 i = 0; i < subStep.velocityIterations; ++i)
- {
- contactSolver.SolveVelocityConstraints();
- }
- // Don't store the TOI contact forces for warm starting
- // because they can be quite large.
- float32 h = subStep.dt;
- // Integrate positions
- for (int32 i = 0; i < m_bodyCount; ++i)
- {
- b2Vec2 c = m_positions[i].c;
- float32 a = m_positions[i].a;
- b2Vec2 v = m_velocities[i].v;
- float32 w = m_velocities[i].w;
- // Check for large velocities
- b2Vec2 translation = h * v;
- if (b2Dot(translation, translation) > b2_maxTranslationSquared)
- {
- float32 ratio = b2_maxTranslation / translation.Length();
- v *= ratio;
- }
- float32 rotation = h * w;
- if (rotation * rotation > b2_maxRotationSquared)
- {
- float32 ratio = b2_maxRotation / b2Abs(rotation);
- w *= ratio;
- }
- // Integrate
- c += h * v;
- a += h * w;
- m_positions[i].c = c;
- m_positions[i].a = a;
- m_velocities[i].v = v;
- m_velocities[i].w = w;
- // Sync bodies
- b2Body* body = m_bodies[i];
- body->m_sweep.c = c;
- body->m_sweep.a = a;
- body->m_linearVelocity = v;
- body->m_angularVelocity = w;
- body->SynchronizeTransform();
- }
- Report(contactSolver.m_velocityConstraints);
- }
- void b2Island::Report(const b2ContactVelocityConstraint* constraints)
- {
- if (m_listener == NULL)
- {
- return;
- }
- for (int32 i = 0; i < m_contactCount; ++i)
- {
- b2Contact* c = m_contacts[i];
- const b2ContactVelocityConstraint* vc = constraints + i;
-
- b2ContactImpulse impulse;
- impulse.count = vc->pointCount;
- for (int32 j = 0; j < vc->pointCount; ++j)
- {
- impulse.normalImpulses[j] = vc->points[j].normalImpulse;
- impulse.tangentImpulses[j] = vc->points[j].tangentImpulse;
- }
- m_listener->PostSolve(c, &impulse);
- }
- }
|