b2GearJoint.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419
  1. /*
  2. * Copyright (c) 2007-2011 Erin Catto http://www.box2d.org
  3. *
  4. * This software is provided 'as-is', without any express or implied
  5. * warranty. In no event will the authors be held liable for any damages
  6. * arising from the use of this software.
  7. * Permission is granted to anyone to use this software for any purpose,
  8. * including commercial applications, and to alter it and redistribute it
  9. * freely, subject to the following restrictions:
  10. * 1. The origin of this software must not be misrepresented; you must not
  11. * claim that you wrote the original software. If you use this software
  12. * in a product, an acknowledgment in the product documentation would be
  13. * appreciated but is not required.
  14. * 2. Altered source versions must be plainly marked as such, and must not be
  15. * misrepresented as being the original software.
  16. * 3. This notice may not be removed or altered from any source distribution.
  17. */
  18. #include <Box2D/Dynamics/Joints/b2GearJoint.h>
  19. #include <Box2D/Dynamics/Joints/b2RevoluteJoint.h>
  20. #include <Box2D/Dynamics/Joints/b2PrismaticJoint.h>
  21. #include <Box2D/Dynamics/b2Body.h>
  22. #include <Box2D/Dynamics/b2TimeStep.h>
  23. // Gear Joint:
  24. // C0 = (coordinate1 + ratio * coordinate2)_initial
  25. // C = (coordinate1 + ratio * coordinate2) - C0 = 0
  26. // J = [J1 ratio * J2]
  27. // K = J * invM * JT
  28. // = J1 * invM1 * J1T + ratio * ratio * J2 * invM2 * J2T
  29. //
  30. // Revolute:
  31. // coordinate = rotation
  32. // Cdot = angularVelocity
  33. // J = [0 0 1]
  34. // K = J * invM * JT = invI
  35. //
  36. // Prismatic:
  37. // coordinate = dot(p - pg, ug)
  38. // Cdot = dot(v + cross(w, r), ug)
  39. // J = [ug cross(r, ug)]
  40. // K = J * invM * JT = invMass + invI * cross(r, ug)^2
  41. b2GearJoint::b2GearJoint(const b2GearJointDef* def)
  42. : b2Joint(def)
  43. {
  44. m_joint1 = def->joint1;
  45. m_joint2 = def->joint2;
  46. m_typeA = m_joint1->GetType();
  47. m_typeB = m_joint2->GetType();
  48. b2Assert(m_typeA == e_revoluteJoint || m_typeA == e_prismaticJoint);
  49. b2Assert(m_typeB == e_revoluteJoint || m_typeB == e_prismaticJoint);
  50. float32 coordinateA, coordinateB;
  51. // TODO_ERIN there might be some problem with the joint edges in b2Joint.
  52. m_bodyC = m_joint1->GetBodyA();
  53. m_bodyA = m_joint1->GetBodyB();
  54. // Get geometry of joint1
  55. b2Transform xfA = m_bodyA->m_xf;
  56. float32 aA = m_bodyA->m_sweep.a;
  57. b2Transform xfC = m_bodyC->m_xf;
  58. float32 aC = m_bodyC->m_sweep.a;
  59. if (m_typeA == e_revoluteJoint)
  60. {
  61. b2RevoluteJoint* revolute = (b2RevoluteJoint*)def->joint1;
  62. m_localAnchorC = revolute->m_localAnchorA;
  63. m_localAnchorA = revolute->m_localAnchorB;
  64. m_referenceAngleA = revolute->m_referenceAngle;
  65. m_localAxisC.SetZero();
  66. coordinateA = aA - aC - m_referenceAngleA;
  67. }
  68. else
  69. {
  70. b2PrismaticJoint* prismatic = (b2PrismaticJoint*)def->joint1;
  71. m_localAnchorC = prismatic->m_localAnchorA;
  72. m_localAnchorA = prismatic->m_localAnchorB;
  73. m_referenceAngleA = prismatic->m_referenceAngle;
  74. m_localAxisC = prismatic->m_localXAxisA;
  75. b2Vec2 pC = m_localAnchorC;
  76. b2Vec2 pA = b2MulT(xfC.q, b2Mul(xfA.q, m_localAnchorA) + (xfA.p - xfC.p));
  77. coordinateA = b2Dot(pA - pC, m_localAxisC);
  78. }
  79. m_bodyD = m_joint2->GetBodyA();
  80. m_bodyB = m_joint2->GetBodyB();
  81. // Get geometry of joint2
  82. b2Transform xfB = m_bodyB->m_xf;
  83. float32 aB = m_bodyB->m_sweep.a;
  84. b2Transform xfD = m_bodyD->m_xf;
  85. float32 aD = m_bodyD->m_sweep.a;
  86. if (m_typeB == e_revoluteJoint)
  87. {
  88. b2RevoluteJoint* revolute = (b2RevoluteJoint*)def->joint2;
  89. m_localAnchorD = revolute->m_localAnchorA;
  90. m_localAnchorB = revolute->m_localAnchorB;
  91. m_referenceAngleB = revolute->m_referenceAngle;
  92. m_localAxisD.SetZero();
  93. coordinateB = aB - aD - m_referenceAngleB;
  94. }
  95. else
  96. {
  97. b2PrismaticJoint* prismatic = (b2PrismaticJoint*)def->joint2;
  98. m_localAnchorD = prismatic->m_localAnchorA;
  99. m_localAnchorB = prismatic->m_localAnchorB;
  100. m_referenceAngleB = prismatic->m_referenceAngle;
  101. m_localAxisD = prismatic->m_localXAxisA;
  102. b2Vec2 pD = m_localAnchorD;
  103. b2Vec2 pB = b2MulT(xfD.q, b2Mul(xfB.q, m_localAnchorB) + (xfB.p - xfD.p));
  104. coordinateB = b2Dot(pB - pD, m_localAxisD);
  105. }
  106. m_ratio = def->ratio;
  107. m_constant = coordinateA + m_ratio * coordinateB;
  108. m_impulse = 0.0f;
  109. }
  110. void b2GearJoint::InitVelocityConstraints(const b2SolverData& data)
  111. {
  112. m_indexA = m_bodyA->m_islandIndex;
  113. m_indexB = m_bodyB->m_islandIndex;
  114. m_indexC = m_bodyC->m_islandIndex;
  115. m_indexD = m_bodyD->m_islandIndex;
  116. m_lcA = m_bodyA->m_sweep.localCenter;
  117. m_lcB = m_bodyB->m_sweep.localCenter;
  118. m_lcC = m_bodyC->m_sweep.localCenter;
  119. m_lcD = m_bodyD->m_sweep.localCenter;
  120. m_mA = m_bodyA->m_invMass;
  121. m_mB = m_bodyB->m_invMass;
  122. m_mC = m_bodyC->m_invMass;
  123. m_mD = m_bodyD->m_invMass;
  124. m_iA = m_bodyA->m_invI;
  125. m_iB = m_bodyB->m_invI;
  126. m_iC = m_bodyC->m_invI;
  127. m_iD = m_bodyD->m_invI;
  128. float32 aA = data.positions[m_indexA].a;
  129. b2Vec2 vA = data.velocities[m_indexA].v;
  130. float32 wA = data.velocities[m_indexA].w;
  131. float32 aB = data.positions[m_indexB].a;
  132. b2Vec2 vB = data.velocities[m_indexB].v;
  133. float32 wB = data.velocities[m_indexB].w;
  134. float32 aC = data.positions[m_indexC].a;
  135. b2Vec2 vC = data.velocities[m_indexC].v;
  136. float32 wC = data.velocities[m_indexC].w;
  137. float32 aD = data.positions[m_indexD].a;
  138. b2Vec2 vD = data.velocities[m_indexD].v;
  139. float32 wD = data.velocities[m_indexD].w;
  140. b2Rot qA(aA), qB(aB), qC(aC), qD(aD);
  141. m_mass = 0.0f;
  142. if (m_typeA == e_revoluteJoint)
  143. {
  144. m_JvAC.SetZero();
  145. m_JwA = 1.0f;
  146. m_JwC = 1.0f;
  147. m_mass += m_iA + m_iC;
  148. }
  149. else
  150. {
  151. b2Vec2 u = b2Mul(qC, m_localAxisC);
  152. b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC);
  153. b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA);
  154. m_JvAC = u;
  155. m_JwC = b2Cross(rC, u);
  156. m_JwA = b2Cross(rA, u);
  157. m_mass += m_mC + m_mA + m_iC * m_JwC * m_JwC + m_iA * m_JwA * m_JwA;
  158. }
  159. if (m_typeB == e_revoluteJoint)
  160. {
  161. m_JvBD.SetZero();
  162. m_JwB = m_ratio;
  163. m_JwD = m_ratio;
  164. m_mass += m_ratio * m_ratio * (m_iB + m_iD);
  165. }
  166. else
  167. {
  168. b2Vec2 u = b2Mul(qD, m_localAxisD);
  169. b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD);
  170. b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB);
  171. m_JvBD = m_ratio * u;
  172. m_JwD = m_ratio * b2Cross(rD, u);
  173. m_JwB = m_ratio * b2Cross(rB, u);
  174. m_mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * m_JwD * m_JwD + m_iB * m_JwB * m_JwB;
  175. }
  176. // Compute effective mass.
  177. m_mass = m_mass > 0.0f ? 1.0f / m_mass : 0.0f;
  178. if (data.step.warmStarting)
  179. {
  180. vA += (m_mA * m_impulse) * m_JvAC;
  181. wA += m_iA * m_impulse * m_JwA;
  182. vB += (m_mB * m_impulse) * m_JvBD;
  183. wB += m_iB * m_impulse * m_JwB;
  184. vC -= (m_mC * m_impulse) * m_JvAC;
  185. wC -= m_iC * m_impulse * m_JwC;
  186. vD -= (m_mD * m_impulse) * m_JvBD;
  187. wD -= m_iD * m_impulse * m_JwD;
  188. }
  189. else
  190. {
  191. m_impulse = 0.0f;
  192. }
  193. data.velocities[m_indexA].v = vA;
  194. data.velocities[m_indexA].w = wA;
  195. data.velocities[m_indexB].v = vB;
  196. data.velocities[m_indexB].w = wB;
  197. data.velocities[m_indexC].v = vC;
  198. data.velocities[m_indexC].w = wC;
  199. data.velocities[m_indexD].v = vD;
  200. data.velocities[m_indexD].w = wD;
  201. }
  202. void b2GearJoint::SolveVelocityConstraints(const b2SolverData& data)
  203. {
  204. b2Vec2 vA = data.velocities[m_indexA].v;
  205. float32 wA = data.velocities[m_indexA].w;
  206. b2Vec2 vB = data.velocities[m_indexB].v;
  207. float32 wB = data.velocities[m_indexB].w;
  208. b2Vec2 vC = data.velocities[m_indexC].v;
  209. float32 wC = data.velocities[m_indexC].w;
  210. b2Vec2 vD = data.velocities[m_indexD].v;
  211. float32 wD = data.velocities[m_indexD].w;
  212. float32 Cdot = b2Dot(m_JvAC, vA - vC) + b2Dot(m_JvBD, vB - vD);
  213. Cdot += (m_JwA * wA - m_JwC * wC) + (m_JwB * wB - m_JwD * wD);
  214. float32 impulse = -m_mass * Cdot;
  215. m_impulse += impulse;
  216. vA += (m_mA * impulse) * m_JvAC;
  217. wA += m_iA * impulse * m_JwA;
  218. vB += (m_mB * impulse) * m_JvBD;
  219. wB += m_iB * impulse * m_JwB;
  220. vC -= (m_mC * impulse) * m_JvAC;
  221. wC -= m_iC * impulse * m_JwC;
  222. vD -= (m_mD * impulse) * m_JvBD;
  223. wD -= m_iD * impulse * m_JwD;
  224. data.velocities[m_indexA].v = vA;
  225. data.velocities[m_indexA].w = wA;
  226. data.velocities[m_indexB].v = vB;
  227. data.velocities[m_indexB].w = wB;
  228. data.velocities[m_indexC].v = vC;
  229. data.velocities[m_indexC].w = wC;
  230. data.velocities[m_indexD].v = vD;
  231. data.velocities[m_indexD].w = wD;
  232. }
  233. bool b2GearJoint::SolvePositionConstraints(const b2SolverData& data)
  234. {
  235. b2Vec2 cA = data.positions[m_indexA].c;
  236. float32 aA = data.positions[m_indexA].a;
  237. b2Vec2 cB = data.positions[m_indexB].c;
  238. float32 aB = data.positions[m_indexB].a;
  239. b2Vec2 cC = data.positions[m_indexC].c;
  240. float32 aC = data.positions[m_indexC].a;
  241. b2Vec2 cD = data.positions[m_indexD].c;
  242. float32 aD = data.positions[m_indexD].a;
  243. b2Rot qA(aA), qB(aB), qC(aC), qD(aD);
  244. float32 linearError = 0.0f;
  245. float32 coordinateA, coordinateB;
  246. b2Vec2 JvAC, JvBD;
  247. float32 JwA, JwB, JwC, JwD;
  248. float32 mass = 0.0f;
  249. if (m_typeA == e_revoluteJoint)
  250. {
  251. JvAC.SetZero();
  252. JwA = 1.0f;
  253. JwC = 1.0f;
  254. mass += m_iA + m_iC;
  255. coordinateA = aA - aC - m_referenceAngleA;
  256. }
  257. else
  258. {
  259. b2Vec2 u = b2Mul(qC, m_localAxisC);
  260. b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC);
  261. b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA);
  262. JvAC = u;
  263. JwC = b2Cross(rC, u);
  264. JwA = b2Cross(rA, u);
  265. mass += m_mC + m_mA + m_iC * JwC * JwC + m_iA * JwA * JwA;
  266. b2Vec2 pC = m_localAnchorC - m_lcC;
  267. b2Vec2 pA = b2MulT(qC, rA + (cA - cC));
  268. coordinateA = b2Dot(pA - pC, m_localAxisC);
  269. }
  270. if (m_typeB == e_revoluteJoint)
  271. {
  272. JvBD.SetZero();
  273. JwB = m_ratio;
  274. JwD = m_ratio;
  275. mass += m_ratio * m_ratio * (m_iB + m_iD);
  276. coordinateB = aB - aD - m_referenceAngleB;
  277. }
  278. else
  279. {
  280. b2Vec2 u = b2Mul(qD, m_localAxisD);
  281. b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD);
  282. b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB);
  283. JvBD = m_ratio * u;
  284. JwD = m_ratio * b2Cross(rD, u);
  285. JwB = m_ratio * b2Cross(rB, u);
  286. mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * JwD * JwD + m_iB * JwB * JwB;
  287. b2Vec2 pD = m_localAnchorD - m_lcD;
  288. b2Vec2 pB = b2MulT(qD, rB + (cB - cD));
  289. coordinateB = b2Dot(pB - pD, m_localAxisD);
  290. }
  291. float32 C = (coordinateA + m_ratio * coordinateB) - m_constant;
  292. float32 impulse = 0.0f;
  293. if (mass > 0.0f)
  294. {
  295. impulse = -C / mass;
  296. }
  297. cA += m_mA * impulse * JvAC;
  298. aA += m_iA * impulse * JwA;
  299. cB += m_mB * impulse * JvBD;
  300. aB += m_iB * impulse * JwB;
  301. cC -= m_mC * impulse * JvAC;
  302. aC -= m_iC * impulse * JwC;
  303. cD -= m_mD * impulse * JvBD;
  304. aD -= m_iD * impulse * JwD;
  305. data.positions[m_indexA].c = cA;
  306. data.positions[m_indexA].a = aA;
  307. data.positions[m_indexB].c = cB;
  308. data.positions[m_indexB].a = aB;
  309. data.positions[m_indexC].c = cC;
  310. data.positions[m_indexC].a = aC;
  311. data.positions[m_indexD].c = cD;
  312. data.positions[m_indexD].a = aD;
  313. // TODO_ERIN not implemented
  314. return linearError < b2_linearSlop;
  315. }
  316. b2Vec2 b2GearJoint::GetAnchorA() const
  317. {
  318. return m_bodyA->GetWorldPoint(m_localAnchorA);
  319. }
  320. b2Vec2 b2GearJoint::GetAnchorB() const
  321. {
  322. return m_bodyB->GetWorldPoint(m_localAnchorB);
  323. }
  324. b2Vec2 b2GearJoint::GetReactionForce(float32 inv_dt) const
  325. {
  326. b2Vec2 P = m_impulse * m_JvAC;
  327. return inv_dt * P;
  328. }
  329. float32 b2GearJoint::GetReactionTorque(float32 inv_dt) const
  330. {
  331. float32 L = m_impulse * m_JwA;
  332. return inv_dt * L;
  333. }
  334. void b2GearJoint::SetRatio(float32 ratio)
  335. {
  336. b2Assert(b2IsValid(ratio));
  337. m_ratio = ratio;
  338. }
  339. float32 b2GearJoint::GetRatio() const
  340. {
  341. return m_ratio;
  342. }
  343. void b2GearJoint::Dump()
  344. {
  345. int32 indexA = m_bodyA->m_islandIndex;
  346. int32 indexB = m_bodyB->m_islandIndex;
  347. int32 index1 = m_joint1->m_index;
  348. int32 index2 = m_joint2->m_index;
  349. b2Log(" b2GearJointDef jd;\n");
  350. b2Log(" jd.bodyA = bodies[%d];\n", indexA);
  351. b2Log(" jd.bodyB = bodies[%d];\n", indexB);
  352. b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected);
  353. b2Log(" jd.joint1 = joints[%d];\n", index1);
  354. b2Log(" jd.joint2 = joints[%d];\n", index2);
  355. b2Log(" jd.ratio = %.15lef;\n", m_ratio);
  356. b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
  357. }