b2FrictionJoint.cpp 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. /*
  2. * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
  3. *
  4. * This software is provided 'as-is', without any express or implied
  5. * warranty. In no event will the authors be held liable for any damages
  6. * arising from the use of this software.
  7. * Permission is granted to anyone to use this software for any purpose,
  8. * including commercial applications, and to alter it and redistribute it
  9. * freely, subject to the following restrictions:
  10. * 1. The origin of this software must not be misrepresented; you must not
  11. * claim that you wrote the original software. If you use this software
  12. * in a product, an acknowledgment in the product documentation would be
  13. * appreciated but is not required.
  14. * 2. Altered source versions must be plainly marked as such, and must not be
  15. * misrepresented as being the original software.
  16. * 3. This notice may not be removed or altered from any source distribution.
  17. */
  18. #include <Box2D/Dynamics/Joints/b2FrictionJoint.h>
  19. #include <Box2D/Dynamics/b2Body.h>
  20. #include <Box2D/Dynamics/b2TimeStep.h>
  21. // Point-to-point constraint
  22. // Cdot = v2 - v1
  23. // = v2 + cross(w2, r2) - v1 - cross(w1, r1)
  24. // J = [-I -r1_skew I r2_skew ]
  25. // Identity used:
  26. // w k % (rx i + ry j) = w * (-ry i + rx j)
  27. // Angle constraint
  28. // Cdot = w2 - w1
  29. // J = [0 0 -1 0 0 1]
  30. // K = invI1 + invI2
  31. void b2FrictionJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor)
  32. {
  33. bodyA = bA;
  34. bodyB = bB;
  35. localAnchorA = bodyA->GetLocalPoint(anchor);
  36. localAnchorB = bodyB->GetLocalPoint(anchor);
  37. }
  38. b2FrictionJoint::b2FrictionJoint(const b2FrictionJointDef* def)
  39. : b2Joint(def)
  40. {
  41. m_localAnchorA = def->localAnchorA;
  42. m_localAnchorB = def->localAnchorB;
  43. m_linearImpulse.SetZero();
  44. m_angularImpulse = 0.0f;
  45. m_maxForce = def->maxForce;
  46. m_maxTorque = def->maxTorque;
  47. }
  48. void b2FrictionJoint::InitVelocityConstraints(const b2SolverData& data)
  49. {
  50. m_indexA = m_bodyA->m_islandIndex;
  51. m_indexB = m_bodyB->m_islandIndex;
  52. m_localCenterA = m_bodyA->m_sweep.localCenter;
  53. m_localCenterB = m_bodyB->m_sweep.localCenter;
  54. m_invMassA = m_bodyA->m_invMass;
  55. m_invMassB = m_bodyB->m_invMass;
  56. m_invIA = m_bodyA->m_invI;
  57. m_invIB = m_bodyB->m_invI;
  58. float32 aA = data.positions[m_indexA].a;
  59. b2Vec2 vA = data.velocities[m_indexA].v;
  60. float32 wA = data.velocities[m_indexA].w;
  61. float32 aB = data.positions[m_indexB].a;
  62. b2Vec2 vB = data.velocities[m_indexB].v;
  63. float32 wB = data.velocities[m_indexB].w;
  64. b2Rot qA(aA), qB(aB);
  65. // Compute the effective mass matrix.
  66. m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
  67. m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
  68. // J = [-I -r1_skew I r2_skew]
  69. // [ 0 -1 0 1]
  70. // r_skew = [-ry; rx]
  71. // Matlab
  72. // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
  73. // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
  74. // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
  75. float32 mA = m_invMassA, mB = m_invMassB;
  76. float32 iA = m_invIA, iB = m_invIB;
  77. b2Mat22 K;
  78. K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y;
  79. K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y;
  80. K.ey.x = K.ex.y;
  81. K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x;
  82. m_linearMass = K.GetInverse();
  83. m_angularMass = iA + iB;
  84. if (m_angularMass > 0.0f)
  85. {
  86. m_angularMass = 1.0f / m_angularMass;
  87. }
  88. if (data.step.warmStarting)
  89. {
  90. // Scale impulses to support a variable time step.
  91. m_linearImpulse *= data.step.dtRatio;
  92. m_angularImpulse *= data.step.dtRatio;
  93. b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y);
  94. vA -= mA * P;
  95. wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse);
  96. vB += mB * P;
  97. wB += iB * (b2Cross(m_rB, P) + m_angularImpulse);
  98. }
  99. else
  100. {
  101. m_linearImpulse.SetZero();
  102. m_angularImpulse = 0.0f;
  103. }
  104. data.velocities[m_indexA].v = vA;
  105. data.velocities[m_indexA].w = wA;
  106. data.velocities[m_indexB].v = vB;
  107. data.velocities[m_indexB].w = wB;
  108. }
  109. void b2FrictionJoint::SolveVelocityConstraints(const b2SolverData& data)
  110. {
  111. b2Vec2 vA = data.velocities[m_indexA].v;
  112. float32 wA = data.velocities[m_indexA].w;
  113. b2Vec2 vB = data.velocities[m_indexB].v;
  114. float32 wB = data.velocities[m_indexB].w;
  115. float32 mA = m_invMassA, mB = m_invMassB;
  116. float32 iA = m_invIA, iB = m_invIB;
  117. float32 h = data.step.dt;
  118. // Solve angular friction
  119. {
  120. float32 Cdot = wB - wA;
  121. float32 impulse = -m_angularMass * Cdot;
  122. float32 oldImpulse = m_angularImpulse;
  123. float32 maxImpulse = h * m_maxTorque;
  124. m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse);
  125. impulse = m_angularImpulse - oldImpulse;
  126. wA -= iA * impulse;
  127. wB += iB * impulse;
  128. }
  129. // Solve linear friction
  130. {
  131. b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA);
  132. b2Vec2 impulse = -b2Mul(m_linearMass, Cdot);
  133. b2Vec2 oldImpulse = m_linearImpulse;
  134. m_linearImpulse += impulse;
  135. float32 maxImpulse = h * m_maxForce;
  136. if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse)
  137. {
  138. m_linearImpulse.Normalize();
  139. m_linearImpulse *= maxImpulse;
  140. }
  141. impulse = m_linearImpulse - oldImpulse;
  142. vA -= mA * impulse;
  143. wA -= iA * b2Cross(m_rA, impulse);
  144. vB += mB * impulse;
  145. wB += iB * b2Cross(m_rB, impulse);
  146. }
  147. data.velocities[m_indexA].v = vA;
  148. data.velocities[m_indexA].w = wA;
  149. data.velocities[m_indexB].v = vB;
  150. data.velocities[m_indexB].w = wB;
  151. }
  152. bool b2FrictionJoint::SolvePositionConstraints(const b2SolverData& data)
  153. {
  154. B2_NOT_USED(data);
  155. return true;
  156. }
  157. b2Vec2 b2FrictionJoint::GetAnchorA() const
  158. {
  159. return m_bodyA->GetWorldPoint(m_localAnchorA);
  160. }
  161. b2Vec2 b2FrictionJoint::GetAnchorB() const
  162. {
  163. return m_bodyB->GetWorldPoint(m_localAnchorB);
  164. }
  165. b2Vec2 b2FrictionJoint::GetReactionForce(float32 inv_dt) const
  166. {
  167. return inv_dt * m_linearImpulse;
  168. }
  169. float32 b2FrictionJoint::GetReactionTorque(float32 inv_dt) const
  170. {
  171. return inv_dt * m_angularImpulse;
  172. }
  173. void b2FrictionJoint::SetMaxForce(float32 force)
  174. {
  175. b2Assert(b2IsValid(force) && force >= 0.0f);
  176. m_maxForce = force;
  177. }
  178. float32 b2FrictionJoint::GetMaxForce() const
  179. {
  180. return m_maxForce;
  181. }
  182. void b2FrictionJoint::SetMaxTorque(float32 torque)
  183. {
  184. b2Assert(b2IsValid(torque) && torque >= 0.0f);
  185. m_maxTorque = torque;
  186. }
  187. float32 b2FrictionJoint::GetMaxTorque() const
  188. {
  189. return m_maxTorque;
  190. }
  191. void b2FrictionJoint::Dump()
  192. {
  193. int32 indexA = m_bodyA->m_islandIndex;
  194. int32 indexB = m_bodyB->m_islandIndex;
  195. b2Log(" b2FrictionJointDef jd;\n");
  196. b2Log(" jd.bodyA = bodies[%d];\n", indexA);
  197. b2Log(" jd.bodyB = bodies[%d];\n", indexB);
  198. b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected);
  199. b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y);
  200. b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y);
  201. b2Log(" jd.maxForce = %.15lef;\n", m_maxForce);
  202. b2Log(" jd.maxTorque = %.15lef;\n", m_maxTorque);
  203. b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
  204. }