123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720 |
- /*
- * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
- *
- * This software is provided 'as-is', without any express or implied
- * warranty. In no event will the authors be held liable for any damages
- * arising from the use of this software.
- * Permission is granted to anyone to use this software for any purpose,
- * including commercial applications, and to alter it and redistribute it
- * freely, subject to the following restrictions:
- * 1. The origin of this software must not be misrepresented; you must not
- * claim that you wrote the original software. If you use this software
- * in a product, an acknowledgment in the product documentation would be
- * appreciated but is not required.
- * 2. Altered source versions must be plainly marked as such, and must not be
- * misrepresented as being the original software.
- * 3. This notice may not be removed or altered from any source distribution.
- */
- #ifndef B2_MATH_H
- #define B2_MATH_H
- #include <Box2D/Common/b2Settings.h>
- #include <math.h>
- /// This function is used to ensure that a floating point number is not a NaN or infinity.
- inline bool b2IsValid(float32 x)
- {
- int32 ix = *reinterpret_cast<int32*>(&x);
- return (ix & 0x7f800000) != 0x7f800000;
- }
- /// This is a approximate yet fast inverse square-root.
- inline float32 b2InvSqrt(float32 x)
- {
- union
- {
- float32 x;
- int32 i;
- } convert;
- convert.x = x;
- float32 xhalf = 0.5f * x;
- convert.i = 0x5f3759df - (convert.i >> 1);
- x = convert.x;
- x = x * (1.5f - xhalf * x * x);
- return x;
- }
- #define b2Sqrt(x) sqrtf(x)
- #define b2Atan2(y, x) atan2f(y, x)
- /// A 2D column vector.
- struct b2Vec2
- {
- /// Default constructor does nothing (for performance).
- b2Vec2() {}
- /// Construct using coordinates.
- b2Vec2(float32 x, float32 y) : x(x), y(y) {}
- /// Set this vector to all zeros.
- void SetZero() { x = 0.0f; y = 0.0f; }
- /// Set this vector to some specified coordinates.
- void Set(float32 x_, float32 y_) { x = x_; y = y_; }
- /// Negate this vector.
- b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
-
- /// Read from and indexed element.
- float32 operator () (int32 i) const
- {
- return (&x)[i];
- }
- /// Write to an indexed element.
- float32& operator () (int32 i)
- {
- return (&x)[i];
- }
- /// Add a vector to this vector.
- void operator += (const b2Vec2& v)
- {
- x += v.x; y += v.y;
- }
-
- /// Subtract a vector from this vector.
- void operator -= (const b2Vec2& v)
- {
- x -= v.x; y -= v.y;
- }
- /// Multiply this vector by a scalar.
- void operator *= (float32 a)
- {
- x *= a; y *= a;
- }
- /// Get the length of this vector (the norm).
- float32 Length() const
- {
- return b2Sqrt(x * x + y * y);
- }
- /// Get the length squared. For performance, use this instead of
- /// b2Vec2::Length (if possible).
- float32 LengthSquared() const
- {
- return x * x + y * y;
- }
- /// Convert this vector into a unit vector. Returns the length.
- float32 Normalize()
- {
- float32 length = Length();
- if (length < b2_epsilon)
- {
- return 0.0f;
- }
- float32 invLength = 1.0f / length;
- x *= invLength;
- y *= invLength;
- return length;
- }
- /// Does this vector contain finite coordinates?
- bool IsValid() const
- {
- return b2IsValid(x) && b2IsValid(y);
- }
- /// Get the skew vector such that dot(skew_vec, other) == cross(vec, other)
- b2Vec2 Skew() const
- {
- return b2Vec2(-y, x);
- }
- float32 x, y;
- };
- /// A 2D column vector with 3 elements.
- struct b2Vec3
- {
- /// Default constructor does nothing (for performance).
- b2Vec3() {}
- /// Construct using coordinates.
- b2Vec3(float32 x, float32 y, float32 z) : x(x), y(y), z(z) {}
- /// Set this vector to all zeros.
- void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; }
- /// Set this vector to some specified coordinates.
- void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; }
- /// Negate this vector.
- b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; }
- /// Add a vector to this vector.
- void operator += (const b2Vec3& v)
- {
- x += v.x; y += v.y; z += v.z;
- }
- /// Subtract a vector from this vector.
- void operator -= (const b2Vec3& v)
- {
- x -= v.x; y -= v.y; z -= v.z;
- }
- /// Multiply this vector by a scalar.
- void operator *= (float32 s)
- {
- x *= s; y *= s; z *= s;
- }
- float32 x, y, z;
- };
- /// A 2-by-2 matrix. Stored in column-major order.
- struct b2Mat22
- {
- /// The default constructor does nothing (for performance).
- b2Mat22() {}
- /// Construct this matrix using columns.
- b2Mat22(const b2Vec2& c1, const b2Vec2& c2)
- {
- ex = c1;
- ey = c2;
- }
- /// Construct this matrix using scalars.
- b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22)
- {
- ex.x = a11; ex.y = a21;
- ey.x = a12; ey.y = a22;
- }
- /// Initialize this matrix using columns.
- void Set(const b2Vec2& c1, const b2Vec2& c2)
- {
- ex = c1;
- ey = c2;
- }
- /// Set this to the identity matrix.
- void SetIdentity()
- {
- ex.x = 1.0f; ey.x = 0.0f;
- ex.y = 0.0f; ey.y = 1.0f;
- }
- /// Set this matrix to all zeros.
- void SetZero()
- {
- ex.x = 0.0f; ey.x = 0.0f;
- ex.y = 0.0f; ey.y = 0.0f;
- }
- b2Mat22 GetInverse() const
- {
- float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y;
- b2Mat22 B;
- float32 det = a * d - b * c;
- if (det != 0.0f)
- {
- det = 1.0f / det;
- }
- B.ex.x = det * d; B.ey.x = -det * b;
- B.ex.y = -det * c; B.ey.y = det * a;
- return B;
- }
- /// Solve A * x = b, where b is a column vector. This is more efficient
- /// than computing the inverse in one-shot cases.
- b2Vec2 Solve(const b2Vec2& b) const
- {
- float32 a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y;
- float32 det = a11 * a22 - a12 * a21;
- if (det != 0.0f)
- {
- det = 1.0f / det;
- }
- b2Vec2 x;
- x.x = det * (a22 * b.x - a12 * b.y);
- x.y = det * (a11 * b.y - a21 * b.x);
- return x;
- }
- b2Vec2 ex, ey;
- };
- /// A 3-by-3 matrix. Stored in column-major order.
- struct b2Mat33
- {
- /// The default constructor does nothing (for performance).
- b2Mat33() {}
- /// Construct this matrix using columns.
- b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3)
- {
- ex = c1;
- ey = c2;
- ez = c3;
- }
- /// Set this matrix to all zeros.
- void SetZero()
- {
- ex.SetZero();
- ey.SetZero();
- ez.SetZero();
- }
- /// Solve A * x = b, where b is a column vector. This is more efficient
- /// than computing the inverse in one-shot cases.
- b2Vec3 Solve33(const b2Vec3& b) const;
- /// Solve A * x = b, where b is a column vector. This is more efficient
- /// than computing the inverse in one-shot cases. Solve only the upper
- /// 2-by-2 matrix equation.
- b2Vec2 Solve22(const b2Vec2& b) const;
- /// Get the inverse of this matrix as a 2-by-2.
- /// Returns the zero matrix if singular.
- void GetInverse22(b2Mat33* M) const;
- /// Get the symmetric inverse of this matrix as a 3-by-3.
- /// Returns the zero matrix if singular.
- void GetSymInverse33(b2Mat33* M) const;
- b2Vec3 ex, ey, ez;
- };
- /// Rotation
- struct b2Rot
- {
- b2Rot() {}
- /// Initialize from an angle in radians
- explicit b2Rot(float32 angle)
- {
- /// TODO_ERIN optimize
- s = sinf(angle);
- c = cosf(angle);
- }
- /// Set using an angle in radians.
- void Set(float32 angle)
- {
- /// TODO_ERIN optimize
- s = sinf(angle);
- c = cosf(angle);
- }
- /// Set to the identity rotation
- void SetIdentity()
- {
- s = 0.0f;
- c = 1.0f;
- }
- /// Get the angle in radians
- float32 GetAngle() const
- {
- return b2Atan2(s, c);
- }
- /// Get the x-axis
- b2Vec2 GetXAxis() const
- {
- return b2Vec2(c, s);
- }
- /// Get the u-axis
- b2Vec2 GetYAxis() const
- {
- return b2Vec2(-s, c);
- }
- /// Sine and cosine
- float32 s, c;
- };
- /// A transform contains translation and rotation. It is used to represent
- /// the position and orientation of rigid frames.
- struct b2Transform
- {
- /// The default constructor does nothing.
- b2Transform() {}
- /// Initialize using a position vector and a rotation.
- b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {}
- /// Set this to the identity transform.
- void SetIdentity()
- {
- p.SetZero();
- q.SetIdentity();
- }
- /// Set this based on the position and angle.
- void Set(const b2Vec2& position, float32 angle)
- {
- p = position;
- q.Set(angle);
- }
- b2Vec2 p;
- b2Rot q;
- };
- /// This describes the motion of a body/shape for TOI computation.
- /// Shapes are defined with respect to the body origin, which may
- /// no coincide with the center of mass. However, to support dynamics
- /// we must interpolate the center of mass position.
- struct b2Sweep
- {
- /// Get the interpolated transform at a specific time.
- /// @param beta is a factor in [0,1], where 0 indicates alpha0.
- void GetTransform(b2Transform* xfb, float32 beta) const;
- /// Advance the sweep forward, yielding a new initial state.
- /// @param alpha the new initial time.
- void Advance(float32 alpha);
- /// Normalize the angles.
- void Normalize();
- b2Vec2 localCenter; ///< local center of mass position
- b2Vec2 c0, c; ///< center world positions
- float32 a0, a; ///< world angles
- /// Fraction of the current time step in the range [0,1]
- /// c0 and a0 are the positions at alpha0.
- float32 alpha0;
- };
- /// Useful constant
- extern const b2Vec2 b2Vec2_zero;
- /// Perform the dot product on two vectors.
- inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b)
- {
- return a.x * b.x + a.y * b.y;
- }
- /// Perform the cross product on two vectors. In 2D this produces a scalar.
- inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b)
- {
- return a.x * b.y - a.y * b.x;
- }
- /// Perform the cross product on a vector and a scalar. In 2D this produces
- /// a vector.
- inline b2Vec2 b2Cross(const b2Vec2& a, float32 s)
- {
- return b2Vec2(s * a.y, -s * a.x);
- }
- /// Perform the cross product on a scalar and a vector. In 2D this produces
- /// a vector.
- inline b2Vec2 b2Cross(float32 s, const b2Vec2& a)
- {
- return b2Vec2(-s * a.y, s * a.x);
- }
- /// Multiply a matrix times a vector. If a rotation matrix is provided,
- /// then this transforms the vector from one frame to another.
- inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v)
- {
- return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
- }
- /// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
- /// then this transforms the vector from one frame to another (inverse transform).
- inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v)
- {
- return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey));
- }
- /// Add two vectors component-wise.
- inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b)
- {
- return b2Vec2(a.x + b.x, a.y + b.y);
- }
- /// Subtract two vectors component-wise.
- inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b)
- {
- return b2Vec2(a.x - b.x, a.y - b.y);
- }
- inline b2Vec2 operator * (float32 s, const b2Vec2& a)
- {
- return b2Vec2(s * a.x, s * a.y);
- }
- inline bool operator == (const b2Vec2& a, const b2Vec2& b)
- {
- return a.x == b.x && a.y == b.y;
- }
- inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b)
- {
- b2Vec2 c = a - b;
- return c.Length();
- }
- inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b)
- {
- b2Vec2 c = a - b;
- return b2Dot(c, c);
- }
- inline b2Vec3 operator * (float32 s, const b2Vec3& a)
- {
- return b2Vec3(s * a.x, s * a.y, s * a.z);
- }
- /// Add two vectors component-wise.
- inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b)
- {
- return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z);
- }
- /// Subtract two vectors component-wise.
- inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b)
- {
- return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z);
- }
- /// Perform the dot product on two vectors.
- inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b)
- {
- return a.x * b.x + a.y * b.y + a.z * b.z;
- }
- /// Perform the cross product on two vectors.
- inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b)
- {
- return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
- }
- inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B)
- {
- return b2Mat22(A.ex + B.ex, A.ey + B.ey);
- }
- // A * B
- inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B)
- {
- return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey));
- }
- // A^T * B
- inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B)
- {
- b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex));
- b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey));
- return b2Mat22(c1, c2);
- }
- /// Multiply a matrix times a vector.
- inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v)
- {
- return v.x * A.ex + v.y * A.ey + v.z * A.ez;
- }
- /// Multiply a matrix times a vector.
- inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v)
- {
- return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
- }
- /// Multiply two rotations: q * r
- inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r)
- {
- // [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc]
- // [qs qc] [rs rc] [qs*rc+qc*rs -qs*rs+qc*rc]
- // s = qs * rc + qc * rs
- // c = qc * rc - qs * rs
- b2Rot qr;
- qr.s = q.s * r.c + q.c * r.s;
- qr.c = q.c * r.c - q.s * r.s;
- return qr;
- }
- /// Transpose multiply two rotations: qT * r
- inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r)
- {
- // [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
- // [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc]
- // s = qc * rs - qs * rc
- // c = qc * rc + qs * rs
- b2Rot qr;
- qr.s = q.c * r.s - q.s * r.c;
- qr.c = q.c * r.c + q.s * r.s;
- return qr;
- }
- /// Rotate a vector
- inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v)
- {
- return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y);
- }
- /// Inverse rotate a vector
- inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v)
- {
- return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y);
- }
- inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v)
- {
- float32 x = (T.q.c * v.x - T.q.s * v.y) + T.p.x;
- float32 y = (T.q.s * v.x + T.q.c * v.y) + T.p.y;
- return b2Vec2(x, y);
- }
- inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v)
- {
- float32 px = v.x - T.p.x;
- float32 py = v.y - T.p.y;
- float32 x = (T.q.c * px + T.q.s * py);
- float32 y = (-T.q.s * px + T.q.c * py);
- return b2Vec2(x, y);
- }
- // v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p
- // = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p
- inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B)
- {
- b2Transform C;
- C.q = b2Mul(A.q, B.q);
- C.p = b2Mul(A.q, B.p) + A.p;
- return C;
- }
- // v2 = A.q' * (B.q * v1 + B.p - A.p)
- // = A.q' * B.q * v1 + A.q' * (B.p - A.p)
- inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B)
- {
- b2Transform C;
- C.q = b2MulT(A.q, B.q);
- C.p = b2MulT(A.q, B.p - A.p);
- return C;
- }
- template <typename T>
- inline T b2Abs(T a)
- {
- return a > T(0) ? a : -a;
- }
- inline b2Vec2 b2Abs(const b2Vec2& a)
- {
- return b2Vec2(b2Abs(a.x), b2Abs(a.y));
- }
- inline b2Mat22 b2Abs(const b2Mat22& A)
- {
- return b2Mat22(b2Abs(A.ex), b2Abs(A.ey));
- }
- template <typename T>
- inline T b2Min(T a, T b)
- {
- return a < b ? a : b;
- }
- inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b)
- {
- return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y));
- }
- template <typename T>
- inline T b2Max(T a, T b)
- {
- return a > b ? a : b;
- }
- inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b)
- {
- return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y));
- }
- template <typename T>
- inline T b2Clamp(T a, T low, T high)
- {
- return b2Max(low, b2Min(a, high));
- }
- inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high)
- {
- return b2Max(low, b2Min(a, high));
- }
- template<typename T> inline void b2Swap(T& a, T& b)
- {
- T tmp = a;
- a = b;
- b = tmp;
- }
- /// "Next Largest Power of 2
- /// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
- /// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
- /// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
- /// largest power of 2. For a 32-bit value:"
- inline uint32 b2NextPowerOfTwo(uint32 x)
- {
- x |= (x >> 1);
- x |= (x >> 2);
- x |= (x >> 4);
- x |= (x >> 8);
- x |= (x >> 16);
- return x + 1;
- }
- inline bool b2IsPowerOfTwo(uint32 x)
- {
- bool result = x > 0 && (x & (x - 1)) == 0;
- return result;
- }
- inline void b2Sweep::GetTransform(b2Transform* xf, float32 beta) const
- {
- xf->p = (1.0f - beta) * c0 + beta * c;
- float32 angle = (1.0f - beta) * a0 + beta * a;
- xf->q.Set(angle);
- // Shift to origin
- xf->p -= b2Mul(xf->q, localCenter);
- }
- inline void b2Sweep::Advance(float32 alpha)
- {
- b2Assert(alpha0 < 1.0f);
- float32 beta = (alpha - alpha0) / (1.0f - alpha0);
- c0 += beta * (c - c0);
- a0 += beta * (a - a0);
- alpha0 = alpha;
- }
- /// Normalize an angle in radians to be between -pi and pi
- inline void b2Sweep::Normalize()
- {
- float32 twoPi = 2.0f * b2_pi;
- float32 d = twoPi * floorf(a0 / twoPi);
- a0 -= d;
- a -= d;
- }
- #endif
|