123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459 |
- /*
- * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
- *
- * This software is provided 'as-is', without any express or implied
- * warranty. In no event will the authors be held liable for any damages
- * arising from the use of this software.
- * Permission is granted to anyone to use this software for any purpose,
- * including commercial applications, and to alter it and redistribute it
- * freely, subject to the following restrictions:
- * 1. The origin of this software must not be misrepresented; you must not
- * claim that you wrote the original software. If you use this software
- * in a product, an acknowledgment in the product documentation would be
- * appreciated but is not required.
- * 2. Altered source versions must be plainly marked as such, and must not be
- * misrepresented as being the original software.
- * 3. This notice may not be removed or altered from any source distribution.
- */
- #include <Box2D/Collision/Shapes/b2PolygonShape.h>
- #include <new>
- b2Shape* b2PolygonShape::Clone(b2BlockAllocator* allocator) const
- {
- void* mem = allocator->Allocate(sizeof(b2PolygonShape));
- b2PolygonShape* clone = new (mem) b2PolygonShape;
- *clone = *this;
- return clone;
- }
- void b2PolygonShape::SetAsBox(float32 hx, float32 hy)
- {
- m_count = 4;
- m_vertices[0].Set(-hx, -hy);
- m_vertices[1].Set( hx, -hy);
- m_vertices[2].Set( hx, hy);
- m_vertices[3].Set(-hx, hy);
- m_normals[0].Set(0.0f, -1.0f);
- m_normals[1].Set(1.0f, 0.0f);
- m_normals[2].Set(0.0f, 1.0f);
- m_normals[3].Set(-1.0f, 0.0f);
- m_centroid.SetZero();
- }
- void b2PolygonShape::SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle)
- {
- m_count = 4;
- m_vertices[0].Set(-hx, -hy);
- m_vertices[1].Set( hx, -hy);
- m_vertices[2].Set( hx, hy);
- m_vertices[3].Set(-hx, hy);
- m_normals[0].Set(0.0f, -1.0f);
- m_normals[1].Set(1.0f, 0.0f);
- m_normals[2].Set(0.0f, 1.0f);
- m_normals[3].Set(-1.0f, 0.0f);
- m_centroid = center;
- b2Transform xf;
- xf.p = center;
- xf.q.Set(angle);
- // Transform vertices and normals.
- for (int32 i = 0; i < m_count; ++i)
- {
- m_vertices[i] = b2Mul(xf, m_vertices[i]);
- m_normals[i] = b2Mul(xf.q, m_normals[i]);
- }
- }
- int32 b2PolygonShape::GetChildCount() const
- {
- return 1;
- }
- static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count)
- {
- b2Assert(count >= 3);
- b2Vec2 c; c.Set(0.0f, 0.0f);
- float32 area = 0.0f;
- // pRef is the reference point for forming triangles.
- // It's location doesn't change the result (except for rounding error).
- b2Vec2 pRef(0.0f, 0.0f);
- #if 0
- // This code would put the reference point inside the polygon.
- for (int32 i = 0; i < count; ++i)
- {
- pRef += vs[i];
- }
- pRef *= 1.0f / count;
- #endif
- const float32 inv3 = 1.0f / 3.0f;
- for (int32 i = 0; i < count; ++i)
- {
- // Triangle vertices.
- b2Vec2 p1 = pRef;
- b2Vec2 p2 = vs[i];
- b2Vec2 p3 = i + 1 < count ? vs[i+1] : vs[0];
- b2Vec2 e1 = p2 - p1;
- b2Vec2 e2 = p3 - p1;
- float32 D = b2Cross(e1, e2);
- float32 triangleArea = 0.5f * D;
- area += triangleArea;
- // Area weighted centroid
- c += triangleArea * inv3 * (p1 + p2 + p3);
- }
- // Centroid
- b2Assert(area > b2_epsilon);
- c *= 1.0f / area;
- return c;
- }
- void b2PolygonShape::Set(const b2Vec2* vertices, int32 count)
- {
- b2Assert(3 <= count && count <= b2_maxPolygonVertices);
- if (count < 3)
- {
- SetAsBox(1.0f, 1.0f);
- return;
- }
-
- int32 n = b2Min(count, b2_maxPolygonVertices);
- // Perform welding and copy vertices into local buffer.
- b2Vec2 ps[b2_maxPolygonVertices];
- int32 tempCount = 0;
- for (int32 i = 0; i < n; ++i)
- {
- b2Vec2 v = vertices[i];
- bool unique = true;
- for (int32 j = 0; j < tempCount; ++j)
- {
- if (b2DistanceSquared(v, ps[j]) < 0.5f * b2_linearSlop)
- {
- unique = false;
- break;
- }
- }
- if (unique)
- {
- ps[tempCount++] = v;
- }
- }
- n = tempCount;
- if (n < 3)
- {
- // Polygon is degenerate.
- b2Assert(false);
- SetAsBox(1.0f, 1.0f);
- return;
- }
- // Create the convex hull using the Gift wrapping algorithm
- // http://en.wikipedia.org/wiki/Gift_wrapping_algorithm
- // Find the right most point on the hull
- int32 i0 = 0;
- float32 x0 = ps[0].x;
- for (int32 i = 1; i < n; ++i)
- {
- float32 x = ps[i].x;
- if (x > x0 || (x == x0 && ps[i].y < ps[i0].y))
- {
- i0 = i;
- x0 = x;
- }
- }
- int32 hull[b2_maxPolygonVertices];
- int32 m = 0;
- int32 ih = i0;
- for (;;)
- {
- hull[m] = ih;
- int32 ie = 0;
- for (int32 j = 1; j < n; ++j)
- {
- if (ie == ih)
- {
- ie = j;
- continue;
- }
- b2Vec2 r = ps[ie] - ps[hull[m]];
- b2Vec2 v = ps[j] - ps[hull[m]];
- float32 c = b2Cross(r, v);
- if (c < 0.0f)
- {
- ie = j;
- }
- // Collinearity check
- if (c == 0.0f && v.LengthSquared() > r.LengthSquared())
- {
- ie = j;
- }
- }
- ++m;
- ih = ie;
- if (ie == i0)
- {
- break;
- }
- }
-
- m_count = m;
- // Copy vertices.
- for (int32 i = 0; i < m; ++i)
- {
- m_vertices[i] = ps[hull[i]];
- }
- // Compute normals. Ensure the edges have non-zero length.
- for (int32 i = 0; i < m; ++i)
- {
- int32 i1 = i;
- int32 i2 = i + 1 < m ? i + 1 : 0;
- b2Vec2 edge = m_vertices[i2] - m_vertices[i1];
- b2Assert(edge.LengthSquared() > b2_epsilon * b2_epsilon);
- m_normals[i] = b2Cross(edge, 1.0f);
- m_normals[i].Normalize();
- }
- // Compute the polygon centroid.
- m_centroid = ComputeCentroid(m_vertices, m);
- }
- bool b2PolygonShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const
- {
- b2Vec2 pLocal = b2MulT(xf.q, p - xf.p);
- for (int32 i = 0; i < m_count; ++i)
- {
- float32 dot = b2Dot(m_normals[i], pLocal - m_vertices[i]);
- if (dot > 0.0f)
- {
- return false;
- }
- }
- return true;
- }
- bool b2PolygonShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
- const b2Transform& xf, int32 childIndex) const
- {
- B2_NOT_USED(childIndex);
- // Put the ray into the polygon's frame of reference.
- b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p);
- b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p);
- b2Vec2 d = p2 - p1;
- float32 lower = 0.0f, upper = input.maxFraction;
- int32 index = -1;
- for (int32 i = 0; i < m_count; ++i)
- {
- // p = p1 + a * d
- // dot(normal, p - v) = 0
- // dot(normal, p1 - v) + a * dot(normal, d) = 0
- float32 numerator = b2Dot(m_normals[i], m_vertices[i] - p1);
- float32 denominator = b2Dot(m_normals[i], d);
- if (denominator == 0.0f)
- {
- if (numerator < 0.0f)
- {
- return false;
- }
- }
- else
- {
- // Note: we want this predicate without division:
- // lower < numerator / denominator, where denominator < 0
- // Since denominator < 0, we have to flip the inequality:
- // lower < numerator / denominator <==> denominator * lower > numerator.
- if (denominator < 0.0f && numerator < lower * denominator)
- {
- // Increase lower.
- // The segment enters this half-space.
- lower = numerator / denominator;
- index = i;
- }
- else if (denominator > 0.0f && numerator < upper * denominator)
- {
- // Decrease upper.
- // The segment exits this half-space.
- upper = numerator / denominator;
- }
- }
- // The use of epsilon here causes the assert on lower to trip
- // in some cases. Apparently the use of epsilon was to make edge
- // shapes work, but now those are handled separately.
- //if (upper < lower - b2_epsilon)
- if (upper < lower)
- {
- return false;
- }
- }
- b2Assert(0.0f <= lower && lower <= input.maxFraction);
- if (index >= 0)
- {
- output->fraction = lower;
- output->normal = b2Mul(xf.q, m_normals[index]);
- return true;
- }
- return false;
- }
- void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const
- {
- B2_NOT_USED(childIndex);
- b2Vec2 lower = b2Mul(xf, m_vertices[0]);
- b2Vec2 upper = lower;
- for (int32 i = 1; i < m_count; ++i)
- {
- b2Vec2 v = b2Mul(xf, m_vertices[i]);
- lower = b2Min(lower, v);
- upper = b2Max(upper, v);
- }
- b2Vec2 r(m_radius, m_radius);
- aabb->lowerBound = lower - r;
- aabb->upperBound = upper + r;
- }
- void b2PolygonShape::ComputeMass(b2MassData* massData, float32 density) const
- {
- // Polygon mass, centroid, and inertia.
- // Let rho be the polygon density in mass per unit area.
- // Then:
- // mass = rho * int(dA)
- // centroid.x = (1/mass) * rho * int(x * dA)
- // centroid.y = (1/mass) * rho * int(y * dA)
- // I = rho * int((x*x + y*y) * dA)
- //
- // We can compute these integrals by summing all the integrals
- // for each triangle of the polygon. To evaluate the integral
- // for a single triangle, we make a change of variables to
- // the (u,v) coordinates of the triangle:
- // x = x0 + e1x * u + e2x * v
- // y = y0 + e1y * u + e2y * v
- // where 0 <= u && 0 <= v && u + v <= 1.
- //
- // We integrate u from [0,1-v] and then v from [0,1].
- // We also need to use the Jacobian of the transformation:
- // D = cross(e1, e2)
- //
- // Simplification: triangle centroid = (1/3) * (p1 + p2 + p3)
- //
- // The rest of the derivation is handled by computer algebra.
- b2Assert(m_count >= 3);
- b2Vec2 center; center.Set(0.0f, 0.0f);
- float32 area = 0.0f;
- float32 I = 0.0f;
- // s is the reference point for forming triangles.
- // It's location doesn't change the result (except for rounding error).
- b2Vec2 s(0.0f, 0.0f);
- // This code would put the reference point inside the polygon.
- for (int32 i = 0; i < m_count; ++i)
- {
- s += m_vertices[i];
- }
- s *= 1.0f / m_count;
- const float32 k_inv3 = 1.0f / 3.0f;
- for (int32 i = 0; i < m_count; ++i)
- {
- // Triangle vertices.
- b2Vec2 e1 = m_vertices[i] - s;
- b2Vec2 e2 = i + 1 < m_count ? m_vertices[i+1] - s : m_vertices[0] - s;
- float32 D = b2Cross(e1, e2);
- float32 triangleArea = 0.5f * D;
- area += triangleArea;
- // Area weighted centroid
- center += triangleArea * k_inv3 * (e1 + e2);
- float32 ex1 = e1.x, ey1 = e1.y;
- float32 ex2 = e2.x, ey2 = e2.y;
- float32 intx2 = ex1*ex1 + ex2*ex1 + ex2*ex2;
- float32 inty2 = ey1*ey1 + ey2*ey1 + ey2*ey2;
- I += (0.25f * k_inv3 * D) * (intx2 + inty2);
- }
- // Total mass
- massData->mass = density * area;
- // Center of mass
- b2Assert(area > b2_epsilon);
- center *= 1.0f / area;
- massData->center = center + s;
- // Inertia tensor relative to the local origin (point s).
- massData->I = density * I;
-
- // Shift to center of mass then to original body origin.
- massData->I += massData->mass * (b2Dot(massData->center, massData->center) - b2Dot(center, center));
- }
- bool b2PolygonShape::Validate() const
- {
- for (int32 i = 0; i < m_count; ++i)
- {
- int32 i1 = i;
- int32 i2 = i < m_count - 1 ? i1 + 1 : 0;
- b2Vec2 p = m_vertices[i1];
- b2Vec2 e = m_vertices[i2] - p;
- for (int32 j = 0; j < m_count; ++j)
- {
- if (j == i1 || j == i2)
- {
- continue;
- }
- b2Vec2 v = m_vertices[j] - p;
- float32 c = b2Cross(e, v);
- if (c < 0.0f)
- {
- return false;
- }
- }
- }
- return true;
- }
|