/* * Copyright 2014 Google Inc. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // independent from idl_parser, since this code is not needed for most clients #include "flatbuffers/flatbuffers.h" #include "flatbuffers/idl.h" #include "flatbuffers/util.h" #include "flatbuffers/code_generators.h" namespace flatbuffers { struct IsAlnum { bool operator()(char c) { return !isalnum(c); } }; static std::string GeneratedFileName(const std::string &path, const std::string &file_name) { return path + file_name + "_generated.h"; } namespace cpp { class CppGenerator : public BaseGenerator { public: CppGenerator(const Parser &parser, const std::string &path, const std::string &file_name) : BaseGenerator(parser, path, file_name, "", "::"), cur_name_space_(nullptr){}; // Iterate through all definitions we haven't generate code for (enums, // structs, // and tables) and output them to a single file. bool generate() { if (IsEverythingGenerated()) return true; std::string code; code = code + "// " + FlatBuffersGeneratedWarning(); // Generate include guard. std::string include_guard_ident = file_name_; // Remove any non-alpha-numeric characters that may appear in a filename. include_guard_ident.erase( std::remove_if(include_guard_ident.begin(), include_guard_ident.end(), IsAlnum()), include_guard_ident.end()); std::string include_guard = "FLATBUFFERS_GENERATED_" + include_guard_ident; include_guard += "_"; // For further uniqueness, also add the namespace. auto name_space = parser_.namespaces_.back(); for (auto it = name_space->components.begin(); it != name_space->components.end(); ++it) { include_guard += *it + "_"; } include_guard += "H_"; std::transform(include_guard.begin(), include_guard.end(), include_guard.begin(), ::toupper); code += "#ifndef " + include_guard + "\n"; code += "#define " + include_guard + "\n\n"; code += "#include \"flatbuffers/flatbuffers.h\"\n\n"; if (parser_.opts.include_dependence_headers) { int num_includes = 0; for (auto it = parser_.included_files_.begin(); it != parser_.included_files_.end(); ++it) { auto basename = flatbuffers::StripPath(flatbuffers::StripExtension(it->first)); if (basename != file_name_) { code += "#include \"" + basename + "_generated.h\"\n"; num_includes++; } } if (num_includes) code += "\n"; } assert(!cur_name_space_); // Generate forward declarations for all structs/tables, since they may // have circular references. for (auto it = parser_.structs_.vec.begin(); it != parser_.structs_.vec.end(); ++it) { auto &struct_def = **it; if (!struct_def.generated) { SetNameSpace(struct_def.defined_namespace, &code); code += "struct " + struct_def.name + ";\n"; if (parser_.opts.generate_object_based_api && !struct_def.fixed) { code += "struct " + NativeName(struct_def.name) + ";\n"; } code += "\n"; } } // Generate code for all the enum declarations. for (auto it = parser_.enums_.vec.begin(); it != parser_.enums_.vec.end(); ++it) { auto &enum_def = **it; if (!enum_def.generated) { SetNameSpace((**it).defined_namespace, &code); GenEnum(**it, &code); } } // Generate code for all structs, then all tables. for (auto it = parser_.structs_.vec.begin(); it != parser_.structs_.vec.end(); ++it) { auto &struct_def = **it; if (struct_def.fixed && !struct_def.generated) { SetNameSpace(struct_def.defined_namespace, &code); GenStruct(struct_def, &code); } } for (auto it = parser_.structs_.vec.begin(); it != parser_.structs_.vec.end(); ++it) { auto &struct_def = **it; if (!struct_def.fixed && !struct_def.generated) { SetNameSpace(struct_def.defined_namespace, &code); GenTable(struct_def, &code); } } for (auto it = parser_.structs_.vec.begin(); it != parser_.structs_.vec.end(); ++it) { auto &struct_def = **it; if (!struct_def.fixed && !struct_def.generated) { SetNameSpace(struct_def.defined_namespace, &code); GenTablePost(struct_def, &code); } } // Generate code for union verifiers. for (auto it = parser_.enums_.vec.begin(); it != parser_.enums_.vec.end(); ++it) { auto &enum_def = **it; if (enum_def.is_union && !enum_def.generated) { SetNameSpace(enum_def.defined_namespace, &code); GenUnionPost(enum_def, &code); } } // Generate convenient global helper functions: if (parser_.root_struct_def_) { SetNameSpace((*parser_.root_struct_def_).defined_namespace, &code); auto &name = parser_.root_struct_def_->name; std::string qualified_name = parser_.namespaces_.back()->GetFullyQualifiedName(name); std::string cpp_qualified_name = TranslateNameSpace(qualified_name); // The root datatype accessor: code += "inline const " + cpp_qualified_name + " *Get"; code += name; code += "(const void *buf) {\n return flatbuffers::GetRoot<"; code += cpp_qualified_name + ">(buf);\n}\n\n"; if (parser_.opts.mutable_buffer) { code += "inline " + name + " *GetMutable"; code += name; code += "(void *buf) {\n return flatbuffers::GetMutableRoot<"; code += name + ">(buf);\n}\n\n"; } if (parser_.file_identifier_.length()) { // Return the identifier code += "inline const char *" + name; code += "Identifier() {\n return \"" + parser_.file_identifier_; code += "\";\n}\n\n"; // Check if a buffer has the identifier. code += "inline bool " + name; code += "BufferHasIdentifier(const void *buf) {\n return flatbuffers::"; code += "BufferHasIdentifier(buf, "; code += name + "Identifier());\n}\n\n"; } // The root verifier: code += "inline bool Verify"; code += name; code += "Buffer(flatbuffers::Verifier &verifier) {\n" " return verifier.VerifyBuffer<"; code += cpp_qualified_name + ">("; if (parser_.file_identifier_.length()) code += name + "Identifier()"; else code += "nullptr"; code += ");\n}\n\n"; if (parser_.file_extension_.length()) { // Return the extension code += "inline const char *" + name; code += "Extension() { return \"" + parser_.file_extension_; code += "\"; }\n\n"; } // Finish a buffer with a given root object: code += "inline void Finish" + name; code += "Buffer(flatbuffers::FlatBufferBuilder &fbb, flatbuffers::Offset<"; code += cpp_qualified_name + "> root) {\n fbb.Finish(root"; if (parser_.file_identifier_.length()) code += ", " + name + "Identifier()"; code += ");\n}\n\n"; if (parser_.opts.generate_object_based_api) { // A convenient root unpack function. auto native_name = NativeName(WrapInNameSpace(*parser_.root_struct_def_)); code += "inline " + GenTypeNativePtr(native_name, nullptr, false); code += " UnPack" + name; code += "(const void *buf, const flatbuffers::resolver_function_t *"; code += "resolver = nullptr) {\n return "; code += GenTypeNativePtr(native_name, nullptr, true); code += "(Get" + name + "(buf)->UnPack(resolver));\n}\n\n"; } } assert(cur_name_space_); SetNameSpace(nullptr, &code); // Close the include guard. code += "#endif // " + include_guard + "\n"; return SaveFile(GeneratedFileName(path_, file_name_).c_str(), code, false); } private: // This tracks the current namespace so we can insert namespace declarations. const Namespace *cur_name_space_; const Namespace *CurrentNameSpace() { return cur_name_space_; } // Translates a qualified name in flatbuffer text format to the same name in // the equivalent C++ namespace. static std::string TranslateNameSpace(const std::string &qualified_name) { std::string cpp_qualified_name = qualified_name; size_t start_pos = 0; while ((start_pos = cpp_qualified_name.find(".", start_pos)) != std::string::npos) { cpp_qualified_name.replace(start_pos, 1, "::"); } return cpp_qualified_name; } // Return a C++ type from the table in idl.h std::string GenTypeBasic(const Type &type, bool user_facing_type) { static const char *ctypename[] = { #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, PTYPE) \ #CTYPE, FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD) #undef FLATBUFFERS_TD }; if (user_facing_type) { if (type.enum_def) return WrapInNameSpace(*type.enum_def); if (type.base_type == BASE_TYPE_BOOL) return "bool"; } return ctypename[type.base_type]; } // Return a C++ pointer type, specialized to the actual struct/table types, // and vector element types. std::string GenTypePointer(const Type &type) { switch (type.base_type) { case BASE_TYPE_STRING: return "flatbuffers::String"; case BASE_TYPE_VECTOR: return "flatbuffers::Vector<" + GenTypeWire(type.VectorType(), "", false) + ">"; case BASE_TYPE_STRUCT: return WrapInNameSpace(*type.struct_def); case BASE_TYPE_UNION: // fall through default: return "void"; } } // Return a C++ type for any type (scalar/pointer) specifically for // building a flatbuffer. std::string GenTypeWire(const Type &type, const char *postfix, bool user_facing_type) { return IsScalar(type.base_type) ? GenTypeBasic(type, user_facing_type) + postfix : IsStruct(type) ? "const " + GenTypePointer(type) + " *" : "flatbuffers::Offset<" + GenTypePointer(type) + ">" + postfix; } // Return a C++ type for any type (scalar/pointer) that reflects its // serialized size. std::string GenTypeSize(const Type &type) { return IsScalar(type.base_type) ? GenTypeBasic(type, false) : IsStruct(type) ? GenTypePointer(type) : "flatbuffers::uoffset_t"; } // TODO(wvo): make this configurable. std::string NativeName(const std::string &name) { return name + "T"; } const std::string &PtrType(const FieldDef *field) { auto attr = field ? field->attributes.Lookup("cpp_ptr_type") : nullptr; return attr ? attr->constant : parser_.opts.cpp_object_api_pointer_type; } std::string GenTypeNativePtr(const std::string &type, const FieldDef *field, bool is_constructor) { auto &ptr_type = PtrType(field); if (ptr_type == "naked") return is_constructor ? "" : type + " *"; return ptr_type + "<" + type + ">"; } std::string GenPtrGet(const FieldDef &field) { auto &ptr_type = PtrType(&field); return ptr_type == "naked" ? "" : ".get()"; } std::string GenTypeNative(const Type &type, bool invector, const FieldDef &field) { switch (type.base_type) { case BASE_TYPE_STRING: return "std::string"; case BASE_TYPE_VECTOR: return "std::vector<" + GenTypeNative(type.VectorType(), true, field) + ">"; case BASE_TYPE_STRUCT: if (IsStruct(type)) { if (invector || field.native_inline) { return WrapInNameSpace(*type.struct_def); } else { return GenTypeNativePtr(WrapInNameSpace(*type.struct_def), &field, false); } } else { return GenTypeNativePtr(NativeName(WrapInNameSpace(*type.struct_def)), &field, false); } case BASE_TYPE_UNION: return type.enum_def->name + "Union"; default: return GenTypeBasic(type, true); } } // Return a C++ type for any type (scalar/pointer) specifically for // using a flatbuffer. std::string GenTypeGet(const Type &type, const char *afterbasic, const char *beforeptr, const char *afterptr, bool user_facing_type) { return IsScalar(type.base_type) ? GenTypeBasic(type, user_facing_type) + afterbasic : beforeptr + GenTypePointer(type) + afterptr; } static std::string GenEnumDecl(const EnumDef &enum_def, const IDLOptions &opts) { return (opts.scoped_enums ? "enum class " : "enum ") + enum_def.name; } static std::string GenEnumValDecl(const EnumDef &enum_def, const std::string &enum_val, const IDLOptions &opts) { return opts.prefixed_enums ? enum_def.name + "_" + enum_val : enum_val; } static std::string GetEnumValUse(const EnumDef &enum_def, const EnumVal &enum_val, const IDLOptions &opts) { if (opts.scoped_enums) { return enum_def.name + "::" + enum_val.name; } else if (opts.prefixed_enums) { return enum_def.name + "_" + enum_val.name; } else { return enum_val.name; } } std::string UnionVerifySignature(EnumDef &enum_def) { return "inline bool Verify" + enum_def.name + "(flatbuffers::Verifier &verifier, const void *union_obj, " + enum_def.name + " type)"; } std::string UnionUnPackSignature(EnumDef &enum_def, bool inclass) { return (inclass ? "static " : "") + std::string("flatbuffers::NativeTable *") + (inclass ? "" : enum_def.name + "Union::") + "UnPack(const void *union_obj, " + enum_def.name + " type, const flatbuffers::resolver_function_t *resolver)"; } std::string UnionPackSignature(EnumDef &enum_def, bool inclass) { return "flatbuffers::Offset " + (inclass ? "" : enum_def.name + "Union::") + "Pack(flatbuffers::FlatBufferBuilder &_fbb, " + "const flatbuffers::rehasher_function_t *rehasher" + (inclass ? " = nullptr" : "") + ") const"; } std::string TableCreateSignature(StructDef &struct_def, bool predecl) { return "inline flatbuffers::Offset<" + struct_def.name + "> Create" + struct_def.name + "(flatbuffers::FlatBufferBuilder &_fbb, const " + NativeName(struct_def.name) + " *_o, const flatbuffers::rehasher_function_t *rehasher" + (predecl ? " = nullptr" : "") + ")"; } std::string TablePackSignature(StructDef &struct_def, bool inclass) { return std::string(inclass ? "static " : "") + "flatbuffers::Offset<" + struct_def.name + "> " + (inclass ? "" : struct_def.name + "::") + "Pack(flatbuffers::FlatBufferBuilder &_fbb, " + "const " + NativeName(struct_def.name) + "* _o, " + "const flatbuffers::rehasher_function_t *_rehasher" + (inclass ? " = nullptr" : "") + ")"; } std::string TableUnPackSignature(StructDef &struct_def, bool inclass) { return NativeName(struct_def.name) + " *" + (inclass ? "" : struct_def.name + "::") + "UnPack(const flatbuffers::resolver_function_t *resolver" + (inclass ? " = nullptr" : "") + ") const"; } // Generate an enum declaration and an enum string lookup table. void GenEnum(EnumDef &enum_def, std::string *code_ptr) { std::string &code = *code_ptr; GenComment(enum_def.doc_comment, code_ptr, nullptr); code += GenEnumDecl(enum_def, parser_.opts); if (parser_.opts.scoped_enums) code += " : " + GenTypeBasic(enum_def.underlying_type, false); code += " {\n"; int64_t anyv = 0; EnumVal *minv = nullptr, *maxv = nullptr; for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end(); ++it) { auto &ev = **it; GenComment(ev.doc_comment, code_ptr, nullptr, " "); code += " " + GenEnumValDecl(enum_def, ev.name, parser_.opts) + " = "; code += NumToString(ev.value); if (it != enum_def.vals.vec.end() - 1) code += ",\n"; minv = !minv || minv->value > ev.value ? &ev : minv; maxv = !maxv || maxv->value < ev.value ? &ev : maxv; anyv |= ev.value; } if (parser_.opts.scoped_enums || parser_.opts.prefixed_enums) { assert(minv && maxv); if (enum_def.attributes.Lookup("bit_flags")) { if (minv->value != 0) // If the user didn't defined NONE value code += ",\n " + GenEnumValDecl(enum_def, "NONE", parser_.opts) + " = 0"; if (maxv->value != anyv) // If the user didn't defined ANY value code += ",\n " + GenEnumValDecl(enum_def, "ANY", parser_.opts) + " = " + NumToString(anyv); } else { // MIN & MAX are useless for bit_flags code += ",\n " + GenEnumValDecl(enum_def, "MIN", parser_.opts) + " = "; code += GenEnumValDecl(enum_def, minv->name, parser_.opts); code += ",\n " + GenEnumValDecl(enum_def, "MAX", parser_.opts) + " = "; code += GenEnumValDecl(enum_def, maxv->name, parser_.opts); } } code += "\n};\n"; if (parser_.opts.scoped_enums && enum_def.attributes.Lookup("bit_flags")) code += "DEFINE_BITMASK_OPERATORS(" + enum_def.name + ", " + GenTypeBasic(enum_def.underlying_type, false) + ")\n"; code += "\n"; // Generate a generate string table for enum values. // Problem is, if values are very sparse that could generate really big // tables. Ideally in that case we generate a map lookup instead, but for // the moment we simply don't output a table at all. auto range = enum_def.vals.vec.back()->value - enum_def.vals.vec.front()->value + 1; // Average distance between values above which we consider a table // "too sparse". Change at will. static const int kMaxSparseness = 5; if (range / static_cast(enum_def.vals.vec.size()) < kMaxSparseness) { code += "inline const char **EnumNames" + enum_def.name + "() {\n"; code += " static const char *names[] = { "; auto val = enum_def.vals.vec.front()->value; for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end(); ++it) { while (val++ != (*it)->value) code += "\"\", "; code += "\"" + (*it)->name + "\", "; } code += "nullptr };\n return names;\n}\n\n"; code += "inline const char *EnumName" + enum_def.name; code += "(" + enum_def.name + " e) { return EnumNames" + enum_def.name; code += "()[static_cast(e)"; if (enum_def.vals.vec.front()->value) { code += " - static_cast("; code += GetEnumValUse(enum_def, *enum_def.vals.vec.front(), parser_.opts) + ")"; } code += "]; }\n\n"; } // Generate type traits for unions to map from a type to union enum value. if (enum_def.is_union) { for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end(); ++it) { auto &ev = **it; if (it == enum_def.vals.vec.begin()) { code += "template struct " + enum_def.name + "Traits {\n"; } else { code += "template<> struct " + enum_def.name + "Traits<" + WrapInNameSpace(*ev.struct_def) + "> {\n"; } code += " static const " + enum_def.name + " enum_value = " + GetEnumValUse(enum_def, ev, parser_.opts) + ";\n"; code += "};\n\n"; } } if (parser_.opts.generate_object_based_api && enum_def.is_union) { // Generate a union type code += "struct " + enum_def.name + "Union {\n"; code += " " + enum_def.name + " type;\n\n"; code += " flatbuffers::NativeTable *table;\n"; code += " " + enum_def.name + "Union() : type("; code += GetEnumValUse(enum_def, *enum_def.vals.Lookup("NONE"), parser_.opts); code += "), table(nullptr) {}\n"; code += " " + enum_def.name + "Union(const "; code += enum_def.name + "Union &);\n"; code += " " + enum_def.name + "Union &operator=(const "; code += enum_def.name + "Union &);\n"; code += " ~" + enum_def.name + "Union() { Reset(); }\n"; code += " void Reset();\n\n"; code += " template \n"; code += " void Set(T&& value) {\n"; code += " Reset();\n"; code += " type = " + enum_def.name; code += "Traits::enum_value;\n"; code += " if (type != "; code += GetEnumValUse(enum_def, *enum_def.vals.Lookup("NONE"), parser_.opts); code += ") {\n"; code += " table = new T(std::forward(value));\n"; code += " }\n"; code += " }\n\n"; code += " " + UnionUnPackSignature(enum_def, true) + ";\n"; code += " " + UnionPackSignature(enum_def, true) + ";\n\n"; for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end(); ++it) { auto &ev = **it; if (ev.value) { auto native_name = NativeName(WrapInNameSpace(*ev.struct_def)); code += " " + native_name + " *As"; code += ev.name + "() { return type == "; code += GetEnumValUse(enum_def, ev, parser_.opts); code += " ? reinterpret_cast<" + native_name; code += " *>(table) : nullptr; }\n"; } } code += "};\n\n"; } if (enum_def.is_union) { code += UnionVerifySignature(enum_def) + ";\n\n"; } } void GenUnionPost(EnumDef &enum_def, std::string *code_ptr) { // Generate a verifier function for this union that can be called by the // table verifier functions. It uses a switch case to select a specific // verifier function to call, this should be safe even if the union type // has been corrupted, since the verifiers will simply fail when called // on the wrong type. std::string &code = *code_ptr; code += UnionVerifySignature(enum_def) + " {\n switch (type) {\n"; for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end(); ++it) { auto &ev = **it; code += " case " + GetEnumValUse(enum_def, ev, parser_.opts); if (!ev.value) { code += ": return true;\n"; // "NONE" enum value. } else { code += ": return verifier.VerifyTable(reinterpret_castname; code += "(_fbb, reinterpret_cast(" + val + ")"; } else { return val; } } std::string GenFieldOffsetName(const FieldDef &field) { std::string uname = field.name; std::transform(uname.begin(), uname.end(), uname.begin(), ::toupper); return "VT_" + uname; } void GenFullyQualifiedNameGetter(const std::string &name, std::string &code) { if (parser_.opts.generate_name_strings) { code += " static FLATBUFFERS_CONSTEXPR const char *GetFullyQualifiedName() " "{\n"; code += " return \"" + parser_.namespaces_.back()->GetFullyQualifiedName(name) + "\";\n"; code += " }\n"; } } std::string GenDefaultConstant(const FieldDef &field) { return field.value.type.base_type == BASE_TYPE_FLOAT ? field.value.constant + "f" : field.value.constant; } std::string GetDefaultScalarValue(const FieldDef &field) { if (field.value.type.enum_def && IsScalar(field.value.type.base_type)) { auto ev = field.value.type.enum_def->ReverseLookup( static_cast(StringToInt(field.value.constant.c_str())), false); if (ev) { return WrapInNameSpace( field.value.type.enum_def->defined_namespace, GetEnumValUse(*field.value.type.enum_def, *ev, parser_.opts)); } else { return GenUnderlyingCast(field, true, field.value.constant); } } else if (field.value.type.base_type == BASE_TYPE_BOOL) { return field.value.constant == "0" ? "false" : "true"; } else { return GenDefaultConstant(field); } } void GenSimpleParam(std::string &code, FieldDef &field) { code += ",\n " + GenTypeWire(field.value.type, " ", true); code += field.name + " = " + GetDefaultScalarValue(field); } // Generate a member, including a default value for scalars and raw pointers. void GenMember(std::string& code, const FieldDef &field) { if (!field.deprecated && // Deprecated fields won't be accessible. field.value.type.base_type != BASE_TYPE_UTYPE) { auto type = GenTypeNative(field.value.type, false, field); auto cpp_type = field.attributes.Lookup("cpp_type"); code += " " + (cpp_type ? cpp_type->constant + " *" : type+ " ") + field.name + ";\n"; } } // Generate the default constructor for this struct. Properly initialize all // scalar members with default values. void GenDefaultConstructor(std::string& code, const StructDef& struct_def) { code += " " + NativeName(struct_def.name) + "()"; std::string initializer_list; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (!field.deprecated && // Deprecated fields won't be accessible. field.value.type.base_type != BASE_TYPE_UTYPE) { auto cpp_type = field.attributes.Lookup("cpp_type"); // Scalar types get parsed defaults, raw pointers get nullptrs. if (IsScalar(field.value.type.base_type)) { if (!initializer_list.empty()) { initializer_list += ",\n "; } initializer_list += field.name + "(" +GetDefaultScalarValue(field) + ")"; } else if (cpp_type) { if (!initializer_list.empty()) { code += ",\n "; } initializer_list += field.name + "(0)"; } } } if (!initializer_list.empty()) { code += "\n : " + initializer_list; } code += " {}\n"; } // Generate an accessor struct, builder structs & function for a table. void GenTable(StructDef &struct_def, std::string *code_ptr) { std::string &code = *code_ptr; if (parser_.opts.generate_object_based_api) { // Generate a C++ object that can hold an unpacked version of this // table. code += "struct " + NativeName(struct_def.name); code += " : public flatbuffers::NativeTable {\n"; code += " typedef " + struct_def.name + " TableType;\n"; // Generate GetFullyQualifiedName GenFullyQualifiedNameGetter(NativeName(struct_def.name), code); for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; GenMember(code, field); } GenDefaultConstructor(code, struct_def); code += "};\n\n"; } // Generate an accessor struct, with methods of the form: // type name() const { return GetField(offset, defaultval); } GenComment(struct_def.doc_comment, code_ptr, nullptr); code += "struct " + struct_def.name; code += " FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table"; code += " {\n"; if (parser_.opts.generate_object_based_api) { code += " typedef " + NativeName(struct_def.name) + " NativeTableType;\n"; } // Generate GetFullyQualifiedName GenFullyQualifiedNameGetter(struct_def.name, code); // Generate field id constants. if (struct_def.fields.vec.size() > 0) { code += " enum {\n"; bool is_first_field = true; // track the first field that's not deprecated for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (!field.deprecated) { // Deprecated fields won't be accessible. if (!is_first_field) { // Add trailing comma and newline to previous element. Don't add // trailing comma to // last element since older versions of gcc complain about this. code += ",\n"; } else { is_first_field = false; } code += " " + GenFieldOffsetName(field) + " = "; code += NumToString(field.value.offset); } } code += "\n };\n"; } // Generate the accessors. for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (!field.deprecated) { // Deprecated fields won't be accessible. auto is_scalar = IsScalar(field.value.type.base_type); GenComment(field.doc_comment, code_ptr, nullptr, " "); code += " " + GenTypeGet(field.value.type, " ", "const ", " *", true); code += field.name + "() const { return "; // Call a different accessor for pointers, that indirects. auto accessor = is_scalar ? "GetField<" : (IsStruct(field.value.type) ? "GetStruct<" : "GetPointer<"); auto offsetstr = GenFieldOffsetName(field); auto call = accessor + GenTypeGet(field.value.type, "", "const ", " *", false) + ">(" + offsetstr; // Default value as second arg for non-pointer types. if (IsScalar(field.value.type.base_type)) call += ", " + GenDefaultConstant(field); call += ")"; code += GenUnderlyingCast(field, true, call); code += "; }\n"; if (parser_.opts.mutable_buffer) { if (is_scalar) { code += " bool mutate_" + field.name + "("; code += GenTypeBasic(field.value.type, true); code += " _" + field.name + ") { return SetField(" + offsetstr + ", "; code += GenUnderlyingCast(field, false, "_" + field.name); code += "); }\n"; } else { auto type = GenTypeGet(field.value.type, " ", "", " *", true); code += " " + type + "mutable_" + field.name + "() { return "; code += GenUnderlyingCast(field, true, accessor + type + ">(" + offsetstr + ")"); code += "; }\n"; } } auto nested = field.attributes.Lookup("nested_flatbuffer"); if (nested) { std::string qualified_name = parser_.namespaces_.back()->GetFullyQualifiedName( nested->constant); auto nested_root = parser_.structs_.Lookup(qualified_name); assert(nested_root); // Guaranteed to exist by parser. (void)nested_root; std::string cpp_qualified_name = TranslateNameSpace(qualified_name); code += " const " + cpp_qualified_name + " *" + field.name; code += "_nested_root() const { return flatbuffers::GetRoot<"; code += cpp_qualified_name + ">(" + field.name + "()->Data()); }\n"; } // Generate a comparison function for this field if it is a key. if (field.key) { code += " bool KeyCompareLessThan(const " + struct_def.name; code += " *o) const { return "; if (field.value.type.base_type == BASE_TYPE_STRING) code += "*"; code += field.name + "() < "; if (field.value.type.base_type == BASE_TYPE_STRING) code += "*"; code += "o->" + field.name + "(); }\n"; code += " int KeyCompareWithValue("; if (field.value.type.base_type == BASE_TYPE_STRING) { code += "const char *val) const { return strcmp(" + field.name; code += "()->c_str(), val); }\n"; } else { if (parser_.opts.scoped_enums && field.value.type.enum_def && IsScalar(field.value.type.base_type)) { code += GenTypeGet(field.value.type, " ", "const ", " *", true); } else { code += GenTypeBasic(field.value.type, false); } code += " val) const { return " + field.name + "() < val ? -1 : "; code += field.name + "() > val; }\n"; } } } } // Generate a verifier function that can check a buffer from an untrusted // source will never cause reads outside the buffer. code += " bool Verify(flatbuffers::Verifier &verifier) const {\n"; code += " return VerifyTableStart(verifier)"; std::string prefix = " &&\n "; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (!field.deprecated) { code += prefix + "VerifyField"; if (field.required) code += "Required"; code += "<" + GenTypeSize(field.value.type); code += ">(verifier, " + GenFieldOffsetName(field) + ")"; switch (field.value.type.base_type) { case BASE_TYPE_UNION: code += prefix + "Verify" + field.value.type.enum_def->name; code += "(verifier, " + field.name + "(), " + field.name + UnionTypeFieldSuffix() + "())"; break; case BASE_TYPE_STRUCT: if (!field.value.type.struct_def->fixed) { code += prefix + "verifier.VerifyTable(" + field.name; code += "())"; } break; case BASE_TYPE_STRING: code += prefix + "verifier.Verify(" + field.name + "())"; break; case BASE_TYPE_VECTOR: code += prefix + "verifier.Verify(" + field.name + "())"; switch (field.value.type.element) { case BASE_TYPE_STRING: { code += prefix + "verifier.VerifyVectorOfStrings(" + field.name; code += "())"; break; } case BASE_TYPE_STRUCT: { if (!field.value.type.struct_def->fixed) { code += prefix + "verifier.VerifyVectorOfTables(" + field.name; code += "())"; } break; } default: break; } break; default: break; } } } code += prefix + "verifier.EndTable()"; code += ";\n }\n"; if (parser_.opts.generate_object_based_api) { // Generate the UnPack() pre declaration. code += " " + TableUnPackSignature(struct_def, true) + ";\n"; code += " " + TablePackSignature(struct_def, true) + ";\n"; } code += "};\n\n"; // End of table. // Generate a builder struct, with methods of the form: // void add_name(type name) { fbb_.AddElement(offset, name, default); // } code += "struct " + struct_def.name; code += "Builder {\n flatbuffers::FlatBufferBuilder &fbb_;\n"; code += " flatbuffers::uoffset_t start_;\n"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (!field.deprecated) { code += " void add_" + field.name + "("; code += GenTypeWire(field.value.type, " ", true) + field.name; code += ") { fbb_.Add"; if (IsScalar(field.value.type.base_type)) { code += "Element<" + GenTypeWire(field.value.type, "", false); code += ">"; } else if (IsStruct(field.value.type)) { code += "Struct"; } else { code += "Offset"; } code += "(" + struct_def.name + "::" + GenFieldOffsetName(field) + ", "; code += GenUnderlyingCast(field, false, field.name); if (IsScalar(field.value.type.base_type)) code += ", " + GenDefaultConstant(field); code += "); }\n"; } } code += " " + struct_def.name; code += "Builder(flatbuffers::FlatBufferBuilder &_fbb) : fbb_(_fbb) "; code += "{ start_ = fbb_.StartTable(); }\n"; code += " " + struct_def.name + "Builder &operator=(const "; code += struct_def.name + "Builder &);\n"; code += " flatbuffers::Offset<" + struct_def.name; code += "> Finish() {\n auto o = flatbuffers::Offset<" + struct_def.name; code += ">(fbb_.EndTable(start_, "; code += NumToString(struct_def.fields.vec.size()) + "));\n"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (!field.deprecated && field.required) { code += " fbb_.Required(o, "; code += struct_def.name + "::" + GenFieldOffsetName(field); code += "); // " + field.name + "\n"; } } code += " return o;\n }\n};\n\n"; // Generate a convenient CreateX function that uses the above builder // to create a table in one go. bool gen_vector_pars = false; code += "inline flatbuffers::Offset<" + struct_def.name + "> Create"; code += struct_def.name; code += "(flatbuffers::FlatBufferBuilder &_fbb"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (!field.deprecated) { if (field.value.type.base_type == BASE_TYPE_STRING || field.value.type.base_type == BASE_TYPE_VECTOR) { gen_vector_pars = true; } GenSimpleParam(code, field); } } code += ") {\n " + struct_def.name + "Builder builder_(_fbb);\n"; for (size_t size = struct_def.sortbysize ? sizeof(largest_scalar_t) : 1; size; size /= 2) { for (auto it = struct_def.fields.vec.rbegin(); it != struct_def.fields.vec.rend(); ++it) { auto &field = **it; if (!field.deprecated && (!struct_def.sortbysize || size == SizeOf(field.value.type.base_type))) { code += " builder_.add_" + field.name + "(" + field.name + ");\n"; } } } code += " return builder_.Finish();\n}\n\n"; // Generate a CreateXDirect function with vector types as parameters if (gen_vector_pars) { code += "inline flatbuffers::Offset<" + struct_def.name + "> Create"; code += struct_def.name; code += "Direct(flatbuffers::FlatBufferBuilder &_fbb"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (!field.deprecated) { if (field.value.type.base_type == BASE_TYPE_STRING) { code += ",\n const char *"; code += field.name + " = nullptr"; } else if (field.value.type.base_type == BASE_TYPE_VECTOR) { code += ",\n const std::vector<"; code += GenTypeWire(field.value.type.VectorType(), "", false); code += "> *" + field.name + " = nullptr"; } else { GenSimpleParam(code, field); } } } code += ") {\n "; code += "return Create"; code += struct_def.name; code += "(_fbb"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (!field.deprecated) { if (field.value.type.base_type == BASE_TYPE_STRING) { code += ", " + field.name + " ? "; code += "_fbb.CreateString(" + field.name + ") : 0"; } else if (field.value.type.base_type == BASE_TYPE_VECTOR) { code += ", " + field.name + " ? "; code += "_fbb.CreateVector<"; code += GenTypeWire(field.value.type.VectorType(), "", false); code += ">(*" + field.name + ") : 0"; } else { code += ", " + field.name; } } } code += ");\n}\n\n"; } if (parser_.opts.generate_object_based_api) { // Generate a pre-declaration for a CreateX method that works with an // unpacked C++ object. code += TableCreateSignature(struct_def, true) + ";\n\n"; } } std::string GenUnpackVal(const Type &type, const std::string &val, bool invector, const FieldDef &afield) { switch (type.base_type) { case BASE_TYPE_STRING: return val + "->str()"; case BASE_TYPE_STRUCT: if (IsStruct(type)) { if (invector || afield.native_inline) { return "*" + val; } else { return GenTypeNativePtr(WrapInNameSpace(*type.struct_def), &afield, true) + "(new " + WrapInNameSpace(*type.struct_def) + "(*" + val + "))"; } } else { return GenTypeNativePtr(NativeName(WrapInNameSpace( *type.struct_def)), &afield, true) + "(" + val + "->UnPack(resolver))"; } default: return val; break; } }; // Generate code for tables that needs to come after the regular definition. void GenTablePost(StructDef &struct_def, std::string *code_ptr) { std::string &code = *code_ptr; if (parser_.opts.generate_object_based_api) { // Generate the UnPack() method. code += "inline " + TableUnPackSignature(struct_def, false) + " {\n"; code += " (void)resolver;\n"; code += " auto _o = new " + NativeName(struct_def.name) + "();\n"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (!field.deprecated) { auto prefix = " { auto _e = " + field.name + "(); "; if (!IsScalar(field.value.type.base_type)) prefix += "if (_e) "; auto deref = "_o->"; auto dest = deref + field.name; auto assign = prefix + dest + " = "; switch (field.value.type.base_type) { case BASE_TYPE_VECTOR: { code += prefix; code += "{ for (flatbuffers::uoffset_t _i = 0;"; code += " _i < _e->size(); _i++) { "; code += dest + ".push_back("; std::string indexing; if (field.value.type.enum_def) { indexing += "(" + field.value.type.enum_def->name + ")"; } indexing += "_e->Get(_i)"; if (field.value.type.element == BASE_TYPE_BOOL) indexing += "!=0"; code += GenUnpackVal(field.value.type.VectorType(), indexing, true, field); code += "); } }"; break; } case BASE_TYPE_UTYPE: { auto &union_field = **(it + 1); assert(union_field.value.type.base_type == BASE_TYPE_UNION); code += prefix + deref + union_field.name + ".type = _e;"; break; } case BASE_TYPE_UNION: { code += prefix + dest + ".table = "; code += field.value.type.enum_def->name; code += "Union::UnPack(_e, "; code += field.name + UnionTypeFieldSuffix() + "(), resolver);"; break; } default: { auto cpp_type = field.attributes.Lookup("cpp_type"); if (cpp_type) { code += prefix; code += "if (resolver) (*resolver)(reinterpret_cast(&"; code += dest; code += "), static_cast(_e)); else "; code += dest + " = nullptr"; } else { code += assign; code += GenUnpackVal(field.value.type, "_e", false, field); } code += ";"; break; } } code += " };\n"; } } code += " return _o;\n}\n\n"; // Generate the X::Pack member function that simply calls the global // CreateX function. code += "inline " + TablePackSignature(struct_def, false) + " {\n"; code += " return Create" + struct_def.name + "(_fbb, _o, _rehasher);\n"; code += "}\n\n"; // Generate a CreateX method that works with an unpacked C++ object. code += TableCreateSignature(struct_def, false) + " {\n"; code += " (void)rehasher;\n"; auto before_return_statement = code.size(); code += " return Create"; code += struct_def.name + "(_fbb"; bool any_fields = false; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (!field.deprecated) { any_fields = true; auto field_name = field.name; if (field.value.type.base_type == BASE_TYPE_UTYPE) { field_name = field_name.substr(0, field_name.size() - strlen(UnionTypeFieldSuffix())); field_name += ".type"; } auto accessor = "_o->" + field_name; if (field.attributes.Lookup("cpp_type")) accessor = "rehasher ? static_cast<" + GenTypeBasic(field.value.type, false) + ">((*rehasher)(" + accessor + ")) : 0"; auto ptrprefix = accessor + " ? "; auto stlprefix = accessor + ".size() ? "; auto postfix = " : 0"; if (field.required && (field.value.type.base_type == BASE_TYPE_STRING || field.value.type.base_type == BASE_TYPE_VECTOR)) { stlprefix = ""; postfix = ""; } code += ",\n "; switch (field.value.type.base_type) { case BASE_TYPE_STRING: code += stlprefix + "_fbb.CreateString(" + accessor + ")"; code += postfix; break; case BASE_TYPE_VECTOR: { auto vector_type = field.value.type.VectorType(); code += stlprefix; switch (vector_type.base_type) { case BASE_TYPE_STRING: code += "_fbb.CreateVectorOfStrings(" + accessor + ")"; break; case BASE_TYPE_STRUCT: if (IsStruct(vector_type)) { code += "_fbb.CreateVectorOfStructs(" + accessor + ")"; } else { code += "_fbb.CreateVector>(" + accessor; code += ".size(), [&](size_t i) { return Create"; code += vector_type.struct_def->name + "(_fbb, " + accessor; code += "[i]" + GenPtrGet(field) + ", rehasher); })"; } break; case BASE_TYPE_BOOL: code += "_fbb.CreateVector(" + accessor + ")"; break; default: { std::string args = accessor; if (field.value.type.enum_def) { const std::string basetype = GenTypeBasic( field.value.type.enum_def->underlying_type, false); args = "(const " + basetype + "*)" + accessor + ".data(), " + accessor + ".size()"; } code += "_fbb.CreateVector(" + args + ")"; break; } } code += postfix; break; } case BASE_TYPE_UNION: code += accessor + ".Pack(_fbb)"; break; case BASE_TYPE_STRUCT: if (IsStruct(field.value.type)) { if (field.native_inline) { code += "&" + accessor; } else { code += ptrprefix + accessor + GenPtrGet(field) + postfix; } } else { code += ptrprefix + "Create"; code += field.value.type.struct_def->name; code += "(_fbb, " + accessor + GenPtrGet(field) + ", rehasher)"; code += postfix; } break; default: code += accessor; break; } } } code += ");\n}\n\n"; if (!any_fields) code.insert(before_return_statement, " (void)_o;\n"); } } static void GenPadding(const FieldDef &field, std::string &code, int &padding_id, const std::function &f) { if (field.padding) { for (int i = 0; i < 4; i++) if (static_cast(field.padding) & (1 << i)) f((1 << i) * 8, code, padding_id); assert(!(field.padding & ~0xF)); } } static void PaddingDefinition(int bits, std::string &code, int &padding_id) { code += " int" + NumToString(bits) + "_t __padding" + NumToString(padding_id++) + ";\n"; } static void PaddingDeclaration(int bits, std::string &code, int &padding_id) { (void)bits; code += " (void)__padding" + NumToString(padding_id++) + ";"; } static void PaddingInitializer(int bits, std::string &code, int &padding_id) { (void)bits; code += ", __padding" + NumToString(padding_id++) + "(0)"; } // Generate an accessor struct with constructor for a flatbuffers struct. void GenStruct(StructDef &struct_def, std::string *code_ptr) { if (struct_def.generated) return; std::string &code = *code_ptr; // Generate an accessor struct, with private variables of the form: // type name_; // Generates manual padding and alignment. // Variables are private because they contain little endian data on all // platforms. GenComment(struct_def.doc_comment, code_ptr, nullptr); code += "MANUALLY_ALIGNED_STRUCT(" + NumToString(struct_def.minalign) + ") "; code += struct_def.name + " FLATBUFFERS_FINAL_CLASS {\n private:\n"; int padding_id = 0; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; code += " " + GenTypeGet(field.value.type, " ", "", " ", false); code += field.name + "_;\n"; GenPadding(field, code, padding_id, PaddingDefinition); } // Generate GetFullyQualifiedName code += "\n public:\n"; GenFullyQualifiedNameGetter(struct_def.name, code); // Generate a default constructor. code += " " + struct_def.name + "() { memset(this, 0, sizeof("; code += struct_def.name + ")); }\n"; // Generate a copy constructor. code += " " + struct_def.name + "(const " + struct_def.name; code += " &_o) { memcpy(this, &_o, sizeof("; code += struct_def.name + ")); }\n"; // Generate a constructor that takes all fields as arguments. if (struct_def.fields.vec.size()) { code += " " + struct_def.name + "("; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (it != struct_def.fields.vec.begin()) code += ", "; code += GenTypeGet(field.value.type, " ", "const ", " &", true); code += "_" + field.name; } code += ")\n : "; padding_id = 0; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (it != struct_def.fields.vec.begin()) code += ", "; code += field.name + "_("; if (IsScalar(field.value.type.base_type)) { code += "flatbuffers::EndianScalar("; code += GenUnderlyingCast(field, false, "_" + field.name); code += "))"; } else { code += "_" + field.name + ")"; } GenPadding(field, code, padding_id, PaddingInitializer); } code += " {"; padding_id = 0; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; GenPadding(field, code, padding_id, PaddingDeclaration); } code += " }\n\n"; } // Generate accessor methods of the form: // type name() const { return flatbuffers::EndianScalar(name_); } for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; GenComment(field.doc_comment, code_ptr, nullptr, " "); auto is_scalar = IsScalar(field.value.type.base_type); code += " " + GenTypeGet(field.value.type, " ", "const ", " &", true); code += field.name + "() const { return "; code += GenUnderlyingCast( field, true, is_scalar ? "flatbuffers::EndianScalar(" + field.name + "_)" : field.name + "_"); code += "; }\n"; if (parser_.opts.mutable_buffer) { if (is_scalar) { code += " void mutate_" + field.name + "("; code += GenTypeBasic(field.value.type, true); code += " _" + field.name + ") { flatbuffers::WriteScalar(&"; code += field.name + "_, "; code += GenUnderlyingCast(field, false, "_" + field.name); code += "); }\n"; } else { code += " "; code += GenTypeGet(field.value.type, "", "", " &", true); code += "mutable_" + field.name + "() { return " + field.name; code += "_; }\n"; } } } code += "};\nSTRUCT_END(" + struct_def.name + ", "; code += NumToString(struct_def.bytesize) + ");\n\n"; } // Set up the correct namespace. Only open a namespace if // the existing one is different (closing/opening only what is necessary) : // // the file must start and end with an empty (or null) namespace // so that namespaces are properly opened and closed void SetNameSpace(const Namespace *ns, std::string *code_ptr) { if (cur_name_space_ == ns) return; // compute the size of the longest common namespace prefix. // if cur_name_space is A::B::C::D and ns is A::B::E::F::G, // the common prefix is A::B:: and we have old_size = 4, new_size = 5 // and common_prefix_size = 2 auto old_size = cur_name_space_ == nullptr ? 0 : cur_name_space_->components.size(); auto new_size = ns == nullptr ? 0 : ns->components.size(); std::vector::size_type common_prefix_size = 0; while (common_prefix_size < old_size && common_prefix_size < new_size && ns->components[common_prefix_size] == cur_name_space_->components[common_prefix_size]) common_prefix_size++; // close cur_name_space in reverse order to reach the common prefix // in the previous example, D then C are closed for (auto j = old_size; j > common_prefix_size; --j) *code_ptr += "} // namespace " + cur_name_space_->components[j - 1] + "\n"; if (old_size != common_prefix_size) *code_ptr += "\n"; // open namespace parts to reach the ns namespace // in the previous example, E, then F, then G are opened for (auto j = common_prefix_size; j != new_size; ++j) *code_ptr += "namespace " + ns->components[j] + " {\n"; if (new_size != common_prefix_size) *code_ptr += "\n"; cur_name_space_ = ns; } }; } // namespace cpp bool GenerateCPP(const Parser &parser, const std::string &path, const std::string &file_name) { cpp::CppGenerator generator(parser, path, file_name); return generator.generate(); } std::string CPPMakeRule(const Parser &parser, const std::string &path, const std::string &file_name) { std::string filebase = flatbuffers::StripPath(flatbuffers::StripExtension(file_name)); std::string make_rule = GeneratedFileName(path, filebase) + ": "; auto included_files = parser.GetIncludedFilesRecursive(file_name); for (auto it = included_files.begin(); it != included_files.end(); ++it) { make_rule += " " + *it; } return make_rule; } } // namespace flatbuffers