/* * Copyright 2014 Google Inc. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef FLATBUFFERS_H_ #define FLATBUFFERS_H_ #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _STLPORT_VERSION #define FLATBUFFERS_CPP98_STL #endif #ifndef FLATBUFFERS_CPP98_STL #include #endif /// @cond FLATBUFFERS_INTERNAL #if __cplusplus <= 199711L && \ (!defined(_MSC_VER) || _MSC_VER < 1600) && \ (!defined(__GNUC__) || \ (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__ < 40400)) #error A C++11 compatible compiler with support for the auto typing is \ required for FlatBuffers. #error __cplusplus _MSC_VER __GNUC__ __GNUC_MINOR__ __GNUC_PATCHLEVEL__ #endif #if !defined(__clang__) && \ defined(__GNUC__) && \ (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__ < 40600) // Backwards compatability for g++ 4.4, and 4.5 which don't have the nullptr // and constexpr keywords. Note the __clang__ check is needed, because clang // presents itself as an older GNUC compiler. #ifndef nullptr_t const class nullptr_t { public: template inline operator T*() const { return 0; } private: void operator&() const; } nullptr = {}; #endif #ifndef constexpr #define constexpr const #endif #endif // The wire format uses a little endian encoding (since that's efficient for // the common platforms). #if !defined(FLATBUFFERS_LITTLEENDIAN) #if defined(__GNUC__) || defined(__clang__) #ifdef __BIG_ENDIAN__ #define FLATBUFFERS_LITTLEENDIAN 0 #else #define FLATBUFFERS_LITTLEENDIAN 1 #endif // __BIG_ENDIAN__ #elif defined(_MSC_VER) #if defined(_M_PPC) #define FLATBUFFERS_LITTLEENDIAN 0 #else #define FLATBUFFERS_LITTLEENDIAN 1 #endif #else #error Unable to determine endianness, define FLATBUFFERS_LITTLEENDIAN. #endif #endif // !defined(FLATBUFFERS_LITTLEENDIAN) #define FLATBUFFERS_VERSION_MAJOR 1 #define FLATBUFFERS_VERSION_MINOR 5 #define FLATBUFFERS_VERSION_REVISION 0 #define FLATBUFFERS_STRING_EXPAND(X) #X #define FLATBUFFERS_STRING(X) FLATBUFFERS_STRING_EXPAND(X) #if (!defined(_MSC_VER) || _MSC_VER > 1600) && \ (!defined(__GNUC__) || (__GNUC__ * 100 + __GNUC_MINOR__ >= 407)) #define FLATBUFFERS_FINAL_CLASS final #else #define FLATBUFFERS_FINAL_CLASS #endif #if (!defined(_MSC_VER) || _MSC_VER >= 1900) && \ (!defined(__GNUC__) || (__GNUC__ * 100 + __GNUC_MINOR__ >= 406)) #define FLATBUFFERS_CONSTEXPR constexpr #else #define FLATBUFFERS_CONSTEXPR #endif /// @endcond /// @file namespace flatbuffers { /// @cond FLATBUFFERS_INTERNAL // Our default offset / size type, 32bit on purpose on 64bit systems. // Also, using a consistent offset type maintains compatibility of serialized // offset values between 32bit and 64bit systems. typedef uint32_t uoffset_t; // Signed offsets for references that can go in both directions. typedef int32_t soffset_t; // Offset/index used in v-tables, can be changed to uint8_t in // format forks to save a bit of space if desired. typedef uint16_t voffset_t; typedef uintmax_t largest_scalar_t; // In 32bits, this evaluates to 2GB - 1 #define FLATBUFFERS_MAX_BUFFER_SIZE ((1ULL << (sizeof(soffset_t) * 8 - 1)) - 1) // We support aligning the contents of buffers up to this size. #define FLATBUFFERS_MAX_ALIGNMENT 16 #ifndef FLATBUFFERS_CPP98_STL // Pointer to relinquished memory. typedef std::unique_ptr> unique_ptr_t; #endif // Wrapper for uoffset_t to allow safe template specialization. template struct Offset { uoffset_t o; Offset() : o(0) {} Offset(uoffset_t _o) : o(_o) {} Offset Union() const { return Offset(o); } }; inline void EndianCheck() { int endiantest = 1; // If this fails, see FLATBUFFERS_LITTLEENDIAN above. assert(*reinterpret_cast(&endiantest) == FLATBUFFERS_LITTLEENDIAN); (void)endiantest; } template T EndianSwap(T t) { #if defined(_MSC_VER) #define FLATBUFFERS_BYTESWAP16 _byteswap_ushort #define FLATBUFFERS_BYTESWAP32 _byteswap_ulong #define FLATBUFFERS_BYTESWAP64 _byteswap_uint64 #else #if defined(__GNUC__) && __GNUC__ * 100 + __GNUC_MINOR__ < 408 // __builtin_bswap16 was missing prior to GCC 4.8. #define FLATBUFFERS_BYTESWAP16(x) \ static_cast(__builtin_bswap32(static_cast(x) << 16)) #else #define FLATBUFFERS_BYTESWAP16 __builtin_bswap16 #endif #define FLATBUFFERS_BYTESWAP32 __builtin_bswap32 #define FLATBUFFERS_BYTESWAP64 __builtin_bswap64 #endif if (sizeof(T) == 1) { // Compile-time if-then's. return t; } else if (sizeof(T) == 2) { auto r = FLATBUFFERS_BYTESWAP16(*reinterpret_cast(&t)); return *reinterpret_cast(&r); } else if (sizeof(T) == 4) { auto r = FLATBUFFERS_BYTESWAP32(*reinterpret_cast(&t)); return *reinterpret_cast(&r); } else if (sizeof(T) == 8) { auto r = FLATBUFFERS_BYTESWAP64(*reinterpret_cast(&t)); return *reinterpret_cast(&r); } else { assert(0); } } template T EndianScalar(T t) { #if FLATBUFFERS_LITTLEENDIAN return t; #else return EndianSwap(t); #endif } template T ReadScalar(const void *p) { return EndianScalar(*reinterpret_cast(p)); } template void WriteScalar(void *p, T t) { *reinterpret_cast(p) = EndianScalar(t); } template size_t AlignOf() { #ifdef _MSC_VER return __alignof(T); #else #ifndef alignof return __alignof__(T); #else return alignof(T); #endif #endif } // When we read serialized data from memory, in the case of most scalars, // we want to just read T, but in the case of Offset, we want to actually // perform the indirection and return a pointer. // The template specialization below does just that. // It is wrapped in a struct since function templates can't overload on the // return type like this. // The typedef is for the convenience of callers of this function // (avoiding the need for a trailing return decltype) template struct IndirectHelper { typedef T return_type; typedef T mutable_return_type; static const size_t element_stride = sizeof(T); static return_type Read(const uint8_t *p, uoffset_t i) { return EndianScalar((reinterpret_cast(p))[i]); } }; template struct IndirectHelper> { typedef const T *return_type; typedef T *mutable_return_type; static const size_t element_stride = sizeof(uoffset_t); static return_type Read(const uint8_t *p, uoffset_t i) { p += i * sizeof(uoffset_t); return reinterpret_cast(p + ReadScalar(p)); } }; template struct IndirectHelper { typedef const T *return_type; typedef T *mutable_return_type; static const size_t element_stride = sizeof(T); static return_type Read(const uint8_t *p, uoffset_t i) { return reinterpret_cast(p + i * sizeof(T)); } }; // An STL compatible iterator implementation for Vector below, effectively // calling Get() for every element. template struct VectorIterator : public std::iterator { typedef std::iterator super_type; public: VectorIterator(const uint8_t *data, uoffset_t i) : data_(data + IndirectHelper::element_stride * i) {} VectorIterator(const VectorIterator &other) : data_(other.data_) {} #ifndef FLATBUFFERS_CPP98_STL VectorIterator(VectorIterator &&other) : data_(std::move(other.data_)) {} #endif VectorIterator &operator=(const VectorIterator &other) { data_ = other.data_; return *this; } VectorIterator &operator=(VectorIterator &&other) { data_ = other.data_; return *this; } bool operator==(const VectorIterator &other) const { return data_ == other.data_; } bool operator!=(const VectorIterator &other) const { return data_ != other.data_; } ptrdiff_t operator-(const VectorIterator &other) const { return (data_ - other.data_) / IndirectHelper::element_stride; } typename super_type::value_type operator *() const { return IndirectHelper::Read(data_, 0); } typename super_type::value_type operator->() const { return IndirectHelper::Read(data_, 0); } VectorIterator &operator++() { data_ += IndirectHelper::element_stride; return *this; } VectorIterator operator++(int) { VectorIterator temp(data_, 0); data_ += IndirectHelper::element_stride; return temp; } VectorIterator operator+(const uoffset_t &offset) { return VectorIterator(data_ + offset * IndirectHelper::element_stride, 0); } VectorIterator& operator+=(const uoffset_t &offset) { data_ += offset * IndirectHelper::element_stride; return *this; } VectorIterator &operator--() { data_ -= IndirectHelper::element_stride; return *this; } VectorIterator operator--(int) { VectorIterator temp(data_, 0); data_ -= IndirectHelper::element_stride; return temp; } VectorIterator operator-(const uoffset_t &offset) { return VectorIterator(data_ - offset * IndirectHelper::element_stride, 0); } VectorIterator& operator-=(const uoffset_t &offset) { data_ -= offset * IndirectHelper::element_stride; return *this; } private: const uint8_t *data_; }; // This is used as a helper type for accessing vectors. // Vector::data() assumes the vector elements start after the length field. template class Vector { public: typedef VectorIterator::mutable_return_type> iterator; typedef VectorIterator::return_type> const_iterator; uoffset_t size() const { return EndianScalar(length_); } // Deprecated: use size(). Here for backwards compatibility. uoffset_t Length() const { return size(); } typedef typename IndirectHelper::return_type return_type; typedef typename IndirectHelper::mutable_return_type mutable_return_type; return_type Get(uoffset_t i) const { assert(i < size()); return IndirectHelper::Read(Data(), i); } return_type operator[](uoffset_t i) const { return Get(i); } // If this is a Vector of enums, T will be its storage type, not the enum // type. This function makes it convenient to retrieve value with enum // type E. template E GetEnum(uoffset_t i) const { return static_cast(Get(i)); } const void *GetStructFromOffset(size_t o) const { return reinterpret_cast(Data() + o); } iterator begin() { return iterator(Data(), 0); } const_iterator begin() const { return const_iterator(Data(), 0); } iterator end() { return iterator(Data(), size()); } const_iterator end() const { return const_iterator(Data(), size()); } // Change elements if you have a non-const pointer to this object. // Scalars only. See reflection.h, and the documentation. void Mutate(uoffset_t i, const T& val) { assert(i < size()); WriteScalar(data() + i, val); } // Change an element of a vector of tables (or strings). // "val" points to the new table/string, as you can obtain from // e.g. reflection::AddFlatBuffer(). void MutateOffset(uoffset_t i, const uint8_t *val) { assert(i < size()); assert(sizeof(T) == sizeof(uoffset_t)); WriteScalar(data() + i, static_cast(val - (Data() + i * sizeof(uoffset_t)))); } // Get a mutable pointer to tables/strings inside this vector. mutable_return_type GetMutableObject(uoffset_t i) const { assert(i < size()); return const_cast(IndirectHelper::Read(Data(), i)); } // The raw data in little endian format. Use with care. const uint8_t *Data() const { return reinterpret_cast(&length_ + 1); } uint8_t *Data() { return reinterpret_cast(&length_ + 1); } // Similarly, but typed, much like std::vector::data const T *data() const { return reinterpret_cast(Data()); } T *data() { return reinterpret_cast(Data()); } template return_type LookupByKey(K key) const { void *search_result = std::bsearch(&key, Data(), size(), IndirectHelper::element_stride, KeyCompare); if (!search_result) { return nullptr; // Key not found. } const uint8_t *element = reinterpret_cast(search_result); return IndirectHelper::Read(element, 0); } protected: // This class is only used to access pre-existing data. Don't ever // try to construct these manually. Vector(); uoffset_t length_; private: template static int KeyCompare(const void *ap, const void *bp) { const K *key = reinterpret_cast(ap); const uint8_t *data = reinterpret_cast(bp); auto table = IndirectHelper::Read(data, 0); // std::bsearch compares with the operands transposed, so we negate the // result here. return -table->KeyCompareWithValue(*key); } }; // Represent a vector much like the template above, but in this case we // don't know what the element types are (used with reflection.h). class VectorOfAny { public: uoffset_t size() const { return EndianScalar(length_); } const uint8_t *Data() const { return reinterpret_cast(&length_ + 1); } uint8_t *Data() { return reinterpret_cast(&length_ + 1); } protected: VectorOfAny(); uoffset_t length_; }; // Convenient helper function to get the length of any vector, regardless // of wether it is null or not (the field is not set). template static inline size_t VectorLength(const Vector *v) { return v ? v->Length() : 0; } struct String : public Vector { const char *c_str() const { return reinterpret_cast(Data()); } std::string str() const { return std::string(c_str(), Length()); } bool operator <(const String &o) const { return strcmp(c_str(), o.c_str()) < 0; } }; // Simple indirection for buffer allocation, to allow this to be overridden // with custom allocation (see the FlatBufferBuilder constructor). class simple_allocator { public: virtual ~simple_allocator() {} virtual uint8_t *allocate(size_t size) const { return new uint8_t[size]; } virtual void deallocate(uint8_t *p) const { delete[] p; } }; // This is a minimal replication of std::vector functionality, // except growing from higher to lower addresses. i.e push_back() inserts data // in the lowest address in the vector. class vector_downward { public: explicit vector_downward(size_t initial_size, const simple_allocator &allocator) : reserved_(initial_size), buf_(allocator.allocate(reserved_)), cur_(buf_ + reserved_), allocator_(allocator) { assert((initial_size & (sizeof(largest_scalar_t) - 1)) == 0); } ~vector_downward() { if (buf_) allocator_.deallocate(buf_); } void clear() { if (buf_ == nullptr) buf_ = allocator_.allocate(reserved_); cur_ = buf_ + reserved_; } #ifndef FLATBUFFERS_CPP98_STL // Relinquish the pointer to the caller. unique_ptr_t release() { // Actually deallocate from the start of the allocated memory. std::function deleter( std::bind(&simple_allocator::deallocate, allocator_, buf_)); // Point to the desired offset. unique_ptr_t retval(data(), deleter); // Don't deallocate when this instance is destroyed. buf_ = nullptr; cur_ = nullptr; return retval; } #endif size_t growth_policy(size_t bytes) { return (bytes / 2) & ~(sizeof(largest_scalar_t) - 1); } uint8_t *make_space(size_t len) { if (len > static_cast(cur_ - buf_)) { auto old_size = size(); auto largest_align = AlignOf(); reserved_ += (std::max)(len, growth_policy(reserved_)); // Round up to avoid undefined behavior from unaligned loads and stores. reserved_ = (reserved_ + (largest_align - 1)) & ~(largest_align - 1); auto new_buf = allocator_.allocate(reserved_); auto new_cur = new_buf + reserved_ - old_size; memcpy(new_cur, cur_, old_size); cur_ = new_cur; allocator_.deallocate(buf_); buf_ = new_buf; } cur_ -= len; // Beyond this, signed offsets may not have enough range: // (FlatBuffers > 2GB not supported). assert(size() < FLATBUFFERS_MAX_BUFFER_SIZE); return cur_; } uoffset_t size() const { assert(cur_ != nullptr && buf_ != nullptr); return static_cast(reserved_ - (cur_ - buf_)); } uint8_t *data() const { assert(cur_ != nullptr); return cur_; } uint8_t *data_at(size_t offset) const { return buf_ + reserved_ - offset; } // push() & fill() are most frequently called with small byte counts (<= 4), // which is why we're using loops rather than calling memcpy/memset. void push(const uint8_t *bytes, size_t num) { auto dest = make_space(num); for (size_t i = 0; i < num; i++) dest[i] = bytes[i]; } void fill(size_t zero_pad_bytes) { auto dest = make_space(zero_pad_bytes); for (size_t i = 0; i < zero_pad_bytes; i++) dest[i] = 0; } void pop(size_t bytes_to_remove) { cur_ += bytes_to_remove; } private: // You shouldn't really be copying instances of this class. vector_downward(const vector_downward &); vector_downward &operator=(const vector_downward &); size_t reserved_; uint8_t *buf_; uint8_t *cur_; // Points at location between empty (below) and used (above). const simple_allocator &allocator_; }; // Converts a Field ID to a virtual table offset. inline voffset_t FieldIndexToOffset(voffset_t field_id) { // Should correspond to what EndTable() below builds up. const int fixed_fields = 2; // Vtable size and Object Size. return static_cast((field_id + fixed_fields) * sizeof(voffset_t)); } // Computes how many bytes you'd have to pad to be able to write an // "scalar_size" scalar if the buffer had grown to "buf_size" (downwards in // memory). inline size_t PaddingBytes(size_t buf_size, size_t scalar_size) { return ((~buf_size) + 1) & (scalar_size - 1); } template const T* data(const std::vector &v) { return v.empty() ? nullptr : &v.front(); } template T* data(std::vector &v) { return v.empty() ? nullptr : &v.front(); } /// @endcond /// @addtogroup flatbuffers_cpp_api /// @{ /// @class FlatBufferBuilder /// @brief Helper class to hold data needed in creation of a FlatBuffer. /// To serialize data, you typically call one of the `Create*()` functions in /// the generated code, which in turn call a sequence of `StartTable`/ /// `PushElement`/`AddElement`/`EndTable`, or the builtin `CreateString`/ /// `CreateVector` functions. Do this is depth-first order to build up a tree to /// the root. `Finish()` wraps up the buffer ready for transport. class FlatBufferBuilder /// @cond FLATBUFFERS_INTERNAL FLATBUFFERS_FINAL_CLASS /// @endcond { public: /// @brief Default constructor for FlatBufferBuilder. /// @param[in] initial_size The initial size of the buffer, in bytes. Defaults /// to`1024`. /// @param[in] allocator A pointer to the `simple_allocator` that should be /// used. Defaults to `nullptr`, which means the `default_allocator` will be /// be used. explicit FlatBufferBuilder(uoffset_t initial_size = 1024, const simple_allocator *allocator = nullptr) : buf_(initial_size, allocator ? *allocator : default_allocator), nested(false), finished(false), minalign_(1), force_defaults_(false), string_pool(nullptr) { offsetbuf_.reserve(16); // Avoid first few reallocs. vtables_.reserve(16); EndianCheck(); } ~FlatBufferBuilder() { if (string_pool) delete string_pool; } /// @brief Reset all the state in this FlatBufferBuilder so it can be reused /// to construct another buffer. void Clear() { buf_.clear(); offsetbuf_.clear(); nested = false; finished = false; vtables_.clear(); minalign_ = 1; if (string_pool) string_pool->clear(); } /// @brief The current size of the serialized buffer, counting from the end. /// @return Returns an `uoffset_t` with the current size of the buffer. uoffset_t GetSize() const { return buf_.size(); } /// @brief Get the serialized buffer (after you call `Finish()`). /// @return Returns an `uint8_t` pointer to the FlatBuffer data inside the /// buffer. uint8_t *GetBufferPointer() const { Finished(); return buf_.data(); } /// @brief Get a pointer to an unfinished buffer. /// @return Returns a `uint8_t` pointer to the unfinished buffer. uint8_t *GetCurrentBufferPointer() const { return buf_.data(); } #ifndef FLATBUFFERS_CPP98_STL /// @brief Get the released pointer to the serialized buffer. /// @warning Do NOT attempt to use this FlatBufferBuilder afterwards! /// @return The `unique_ptr` returned has a special allocator that knows how /// to deallocate this pointer (since it points to the middle of an /// allocation). Thus, do not mix this pointer with other `unique_ptr`'s, or /// call `release()`/`reset()` on it. unique_ptr_t ReleaseBufferPointer() { Finished(); return buf_.release(); } #endif /// @brief get the minimum alignment this buffer needs to be accessed /// properly. This is only known once all elements have been written (after /// you call Finish()). You can use this information if you need to embed /// a FlatBuffer in some other buffer, such that you can later read it /// without first having to copy it into its own buffer. size_t GetBufferMinAlignment() { Finished(); return minalign_; } /// @cond FLATBUFFERS_INTERNAL void Finished() const { // If you get this assert, you're attempting to get access a buffer // which hasn't been finished yet. Be sure to call // FlatBufferBuilder::Finish with your root table. // If you really need to access an unfinished buffer, call // GetCurrentBufferPointer instead. assert(finished); } /// @endcond /// @brief In order to save space, fields that are set to their default value /// don't get serialized into the buffer. /// @param[in] bool fd When set to `true`, always serializes default values. void ForceDefaults(bool fd) { force_defaults_ = fd; } /// @cond FLATBUFFERS_INTERNAL void Pad(size_t num_bytes) { buf_.fill(num_bytes); } void Align(size_t elem_size) { if (elem_size > minalign_) minalign_ = elem_size; buf_.fill(PaddingBytes(buf_.size(), elem_size)); } void PushFlatBuffer(const uint8_t *bytes, size_t size) { PushBytes(bytes, size); finished = true; } void PushBytes(const uint8_t *bytes, size_t size) { buf_.push(bytes, size); } void PopBytes(size_t amount) { buf_.pop(amount); } template void AssertScalarT() { #ifndef FLATBUFFERS_CPP98_STL // The code assumes power of 2 sizes and endian-swap-ability. static_assert(std::is_scalar::value // The Offset type is essentially a scalar but fails is_scalar. || sizeof(T) == sizeof(Offset), "T must be a scalar type"); #endif } // Write a single aligned scalar to the buffer template uoffset_t PushElement(T element) { AssertScalarT(); T litle_endian_element = EndianScalar(element); Align(sizeof(T)); PushBytes(reinterpret_cast(&litle_endian_element), sizeof(T)); return GetSize(); } template uoffset_t PushElement(Offset off) { // Special case for offsets: see ReferTo below. return PushElement(ReferTo(off.o)); } // When writing fields, we track where they are, so we can create correct // vtables later. void TrackField(voffset_t field, uoffset_t off) { FieldLoc fl = { off, field }; offsetbuf_.push_back(fl); } // Like PushElement, but additionally tracks the field this represents. template void AddElement(voffset_t field, T e, T def) { // We don't serialize values equal to the default. if (e == def && !force_defaults_) return; auto off = PushElement(e); TrackField(field, off); } template void AddOffset(voffset_t field, Offset off) { if (!off.o) return; // An offset of 0 means NULL, don't store. AddElement(field, ReferTo(off.o), static_cast(0)); } template void AddStruct(voffset_t field, const T *structptr) { if (!structptr) return; // Default, don't store. Align(AlignOf()); PushBytes(reinterpret_cast(structptr), sizeof(T)); TrackField(field, GetSize()); } void AddStructOffset(voffset_t field, uoffset_t off) { TrackField(field, off); } // Offsets initially are relative to the end of the buffer (downwards). // This function converts them to be relative to the current location // in the buffer (when stored here), pointing upwards. uoffset_t ReferTo(uoffset_t off) { // Align to ensure GetSize() below is correct. Align(sizeof(uoffset_t)); // Offset must refer to something already in buffer. assert(off && off <= GetSize()); return GetSize() - off + static_cast(sizeof(uoffset_t)); } void NotNested() { // If you hit this, you're trying to construct a Table/Vector/String // during the construction of its parent table (between the MyTableBuilder // and table.Finish(). // Move the creation of these sub-objects to above the MyTableBuilder to // not get this assert. // Ignoring this assert may appear to work in simple cases, but the reason // it is here is that storing objects in-line may cause vtable offsets // to not fit anymore. It also leads to vtable duplication. assert(!nested); } // From generated code (or from the parser), we call StartTable/EndTable // with a sequence of AddElement calls in between. uoffset_t StartTable() { NotNested(); nested = true; return GetSize(); } // This finishes one serialized object by generating the vtable if it's a // table, comparing it against existing vtables, and writing the // resulting vtable offset. uoffset_t EndTable(uoffset_t start, voffset_t numfields) { // If you get this assert, a corresponding StartTable wasn't called. assert(nested); // Write the vtable offset, which is the start of any Table. // We fill it's value later. auto vtableoffsetloc = PushElement(0); // Write a vtable, which consists entirely of voffset_t elements. // It starts with the number of offsets, followed by a type id, followed // by the offsets themselves. In reverse: buf_.fill(numfields * sizeof(voffset_t)); auto table_object_size = vtableoffsetloc - start; assert(table_object_size < 0x10000); // Vtable use 16bit offsets. PushElement(static_cast(table_object_size)); PushElement(FieldIndexToOffset(numfields)); // Write the offsets into the table for (auto field_location = offsetbuf_.begin(); field_location != offsetbuf_.end(); ++field_location) { auto pos = static_cast(vtableoffsetloc - field_location->off); // If this asserts, it means you've set a field twice. assert(!ReadScalar(buf_.data() + field_location->id)); WriteScalar(buf_.data() + field_location->id, pos); } offsetbuf_.clear(); auto vt1 = reinterpret_cast(buf_.data()); auto vt1_size = ReadScalar(vt1); auto vt_use = GetSize(); // See if we already have generated a vtable with this exact same // layout before. If so, make it point to the old one, remove this one. for (auto it = vtables_.begin(); it != vtables_.end(); ++it) { auto vt2 = reinterpret_cast(buf_.data_at(*it)); auto vt2_size = *vt2; if (vt1_size != vt2_size || memcmp(vt2, vt1, vt1_size)) continue; vt_use = *it; buf_.pop(GetSize() - vtableoffsetloc); break; } // If this is a new vtable, remember it. if (vt_use == GetSize()) { vtables_.push_back(vt_use); } // Fill the vtable offset we created above. // The offset points from the beginning of the object to where the // vtable is stored. // Offsets default direction is downward in memory for future format // flexibility (storing all vtables at the start of the file). WriteScalar(buf_.data_at(vtableoffsetloc), static_cast(vt_use) - static_cast(vtableoffsetloc)); nested = false; return vtableoffsetloc; } // This checks a required field has been set in a given table that has // just been constructed. template void Required(Offset table, voffset_t field) { auto table_ptr = buf_.data_at(table.o); auto vtable_ptr = table_ptr - ReadScalar(table_ptr); bool ok = ReadScalar(vtable_ptr + field) != 0; // If this fails, the caller will show what field needs to be set. assert(ok); (void)ok; } uoffset_t StartStruct(size_t alignment) { Align(alignment); return GetSize(); } uoffset_t EndStruct() { return GetSize(); } void ClearOffsets() { offsetbuf_.clear(); } // Aligns such that when "len" bytes are written, an object can be written // after it with "alignment" without padding. void PreAlign(size_t len, size_t alignment) { buf_.fill(PaddingBytes(GetSize() + len, alignment)); } template void PreAlign(size_t len) { AssertScalarT(); PreAlign(len, sizeof(T)); } /// @endcond /// @brief Store a string in the buffer, which can contain any binary data. /// @param[in] str A const char pointer to the data to be stored as a string. /// @param[in] len The number of bytes that should be stored from `str`. /// @return Returns the offset in the buffer where the string starts. Offset CreateString(const char *str, size_t len) { NotNested(); PreAlign(len + 1); // Always 0-terminated. buf_.fill(1); PushBytes(reinterpret_cast(str), len); PushElement(static_cast(len)); return Offset(GetSize()); } /// @brief Store a string in the buffer, which is null-terminated. /// @param[in] str A const char pointer to a C-string to add to the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateString(const char *str) { return CreateString(str, strlen(str)); } /// @brief Store a string in the buffer, which can contain any binary data. /// @param[in] str A const reference to a std::string to store in the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateString(const std::string &str) { return CreateString(str.c_str(), str.length()); } /// @brief Store a string in the buffer, which can contain any binary data. /// @param[in] str A const pointer to a `String` struct to add to the buffer. /// @return Returns the offset in the buffer where the string starts Offset CreateString(const String *str) { return str ? CreateString(str->c_str(), str->Length()) : 0; } /// @brief Store a string in the buffer, which can contain any binary data. /// If a string with this exact contents has already been serialized before, /// instead simply returns the offset of the existing string. /// @param[in] str A const char pointer to the data to be stored as a string. /// @param[in] len The number of bytes that should be stored from `str`. /// @return Returns the offset in the buffer where the string starts. Offset CreateSharedString(const char *str, size_t len) { if (!string_pool) string_pool = new StringOffsetMap(StringOffsetCompare(buf_)); auto size_before_string = buf_.size(); // Must first serialize the string, since the set is all offsets into // buffer. auto off = CreateString(str, len); auto it = string_pool->find(off); // If it exists we reuse existing serialized data! if (it != string_pool->end()) { // We can remove the string we serialized. buf_.pop(buf_.size() - size_before_string); return *it; } // Record this string for future use. string_pool->insert(off); return off; } /// @brief Store a string in the buffer, which null-terminated. /// If a string with this exact contents has already been serialized before, /// instead simply returns the offset of the existing string. /// @param[in] str A const char pointer to a C-string to add to the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateSharedString(const char *str) { return CreateSharedString(str, strlen(str)); } /// @brief Store a string in the buffer, which can contain any binary data. /// If a string with this exact contents has already been serialized before, /// instead simply returns the offset of the existing string. /// @param[in] str A const reference to a std::string to store in the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateSharedString(const std::string &str) { return CreateSharedString(str.c_str(), str.length()); } /// @brief Store a string in the buffer, which can contain any binary data. /// If a string with this exact contents has already been serialized before, /// instead simply returns the offset of the existing string. /// @param[in] str A const pointer to a `String` struct to add to the buffer. /// @return Returns the offset in the buffer where the string starts Offset CreateSharedString(const String *str) { return CreateSharedString(str->c_str(), str->Length()); } /// @cond FLATBUFFERS_INTERNAL uoffset_t EndVector(size_t len) { assert(nested); // Hit if no corresponding StartVector. nested = false; return PushElement(static_cast(len)); } void StartVector(size_t len, size_t elemsize) { NotNested(); nested = true; PreAlign(len * elemsize); PreAlign(len * elemsize, elemsize); // Just in case elemsize > uoffset_t. } // Call this right before StartVector/CreateVector if you want to force the // alignment to be something different than what the element size would // normally dictate. // This is useful when storing a nested_flatbuffer in a vector of bytes, // or when storing SIMD floats, etc. void ForceVectorAlignment(size_t len, size_t elemsize, size_t alignment) { PreAlign(len * elemsize, alignment); } uint8_t *ReserveElements(size_t len, size_t elemsize) { return buf_.make_space(len * elemsize); } /// @endcond /// @brief Serialize an array into a FlatBuffer `vector`. /// @tparam T The data type of the array elements. /// @param[in] v A pointer to the array of type `T` to serialize into the /// buffer as a `vector`. /// @param[in] len The number of elements to serialize. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVector(const T *v, size_t len) { StartVector(len, sizeof(T)); for (auto i = len; i > 0; ) { PushElement(v[--i]); } return Offset>(EndVector(len)); } /// @brief Serialize a `std::vector` into a FlatBuffer `vector`. /// @tparam T The data type of the `std::vector` elements. /// @param v A const reference to the `std::vector` to serialize into the /// buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVector(const std::vector &v) { return CreateVector(data(v), v.size()); } // vector may be implemented using a bit-set, so we can't access it as // an array. Instead, read elements manually. // Background: https://isocpp.org/blog/2012/11/on-vectorbool Offset> CreateVector(const std::vector &v) { StartVector(v.size(), sizeof(uint8_t)); for (auto i = v.size(); i > 0; ) { PushElement(static_cast(v[--i])); } return Offset>(EndVector(v.size())); } #ifndef FLATBUFFERS_CPP98_STL /// @brief Serialize values returned by a function into a FlatBuffer `vector`. /// This is a convenience function that takes care of iteration for you. /// @tparam T The data type of the `std::vector` elements. /// @param f A function that takes the current iteration 0..vector_size-1 and /// returns any type that you can construct a FlatBuffers vector out of. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVector(size_t vector_size, const std::function &f) { std::vector elems(vector_size); for (size_t i = 0; i < vector_size; i++) elems[i] = f(i); return CreateVector(elems); } #endif /// @brief Serialize a `std::vector` into a FlatBuffer `vector`. /// This is a convenience function for a common case. /// @param v A const reference to the `std::vector` to serialize into the /// buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. Offset>> CreateVectorOfStrings( const std::vector &v) { std::vector> offsets(v.size()); for (size_t i = 0; i < v.size(); i++) offsets[i] = CreateString(v[i]); return CreateVector(offsets); } /// @brief Serialize an array of structs into a FlatBuffer `vector`. /// @tparam T The data type of the struct array elements. /// @param[in] v A pointer to the array of type `T` to serialize into the /// buffer as a `vector`. /// @param[in] len The number of elements to serialize. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVectorOfStructs( const T *v, size_t len) { StartVector(len * sizeof(T) / AlignOf(), AlignOf()); PushBytes(reinterpret_cast(v), sizeof(T) * len); return Offset>(EndVector(len)); } /// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector`. /// @tparam T The data type of the `std::vector` struct elements. /// @param[in]] v A const reference to the `std::vector` of structs to /// serialize into the buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVectorOfStructs( const std::vector &v) { return CreateVectorOfStructs(data(v), v.size()); } /// @cond FLATBUFFERS_INTERNAL template struct TableKeyComparator { TableKeyComparator(vector_downward& buf) : buf_(buf) {} bool operator()(const Offset &a, const Offset &b) const { auto table_a = reinterpret_cast(buf_.data_at(a.o)); auto table_b = reinterpret_cast(buf_.data_at(b.o)); return table_a->KeyCompareLessThan(table_b); } vector_downward& buf_; private: TableKeyComparator& operator= (const TableKeyComparator&); }; /// @endcond /// @brief Serialize an array of `table` offsets as a `vector` in the buffer /// in sorted order. /// @tparam T The data type that the offset refers to. /// @param[in] v An array of type `Offset` that contains the `table` /// offsets to store in the buffer in sorted order. /// @param[in] len The number of elements to store in the `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset>> CreateVectorOfSortedTables( Offset *v, size_t len) { std::sort(v, v + len, TableKeyComparator(buf_)); return CreateVector(v, len); } /// @brief Serialize an array of `table` offsets as a `vector` in the buffer /// in sorted order. /// @tparam T The data type that the offset refers to. /// @param[in] v An array of type `Offset` that contains the `table` /// offsets to store in the buffer in sorted order. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset>> CreateVectorOfSortedTables( std::vector> *v) { return CreateVectorOfSortedTables(data(*v), v->size()); } /// @brief Specialized version of `CreateVector` for non-copying use cases. /// Write the data any time later to the returned buffer pointer `buf`. /// @param[in] len The number of elements to store in the `vector`. /// @param[in] elemsize The size of each element in the `vector`. /// @param[out] buf A pointer to a `uint8_t` pointer that can be /// written to at a later time to serialize the data into a `vector` /// in the buffer. uoffset_t CreateUninitializedVector(size_t len, size_t elemsize, uint8_t **buf) { NotNested(); StartVector(len, elemsize); buf_.make_space(len * elemsize); auto vec_start = GetSize(); auto vec_end = EndVector(len); *buf = buf_.data_at(vec_start); return vec_end; } /// @brief Specialized version of `CreateVector` for non-copying use cases. /// Write the data any time later to the returned buffer pointer `buf`. /// @tparam T The data type of the data that will be stored in the buffer /// as a `vector`. /// @param[in] len The number of elements to store in the `vector`. /// @param[out] buf A pointer to a pointer of type `T` that can be /// written to at a later time to serialize the data into a `vector` /// in the buffer. template Offset> CreateUninitializedVector( size_t len, T **buf) { return CreateUninitializedVector(len, sizeof(T), reinterpret_cast(buf)); } /// @brief The length of a FlatBuffer file header. static const size_t kFileIdentifierLength = 4; /// @brief Finish serializing a buffer by writing the root offset. /// @param[in] file_identifier If a `file_identifier` is given, the buffer /// will be prefixed with a standard FlatBuffers file header. template void Finish(Offset root, const char *file_identifier = nullptr) { Finish(root.o, file_identifier, false); } /// @brief Finish a buffer with a 32 bit size field pre-fixed (size of the /// buffer following the size field). These buffers are NOT compatible /// with standard buffers created by Finish, i.e. you can't call GetRoot /// on them, you have to use GetSizePrefixedRoot instead. /// All >32 bit quantities in this buffer will be aligned when the whole /// size pre-fixed buffer is aligned. /// These kinds of buffers are useful for creating a stream of FlatBuffers. template void FinishSizePrefixed(Offset root, const char *file_identifier = nullptr) { Finish(root.o, file_identifier, true); } private: // You shouldn't really be copying instances of this class. FlatBufferBuilder(const FlatBufferBuilder &); FlatBufferBuilder &operator=(const FlatBufferBuilder &); void Finish(uoffset_t root, const char *file_identifier, bool size_prefix) { NotNested(); // This will cause the whole buffer to be aligned. PreAlign((size_prefix ? sizeof(uoffset_t) : 0) + sizeof(uoffset_t) + (file_identifier ? kFileIdentifierLength : 0), minalign_); if (file_identifier) { assert(strlen(file_identifier) == kFileIdentifierLength); buf_.push(reinterpret_cast(file_identifier), kFileIdentifierLength); } PushElement(ReferTo(root)); // Location of root. if (size_prefix) { PushElement(GetSize()); } finished = true; } struct FieldLoc { uoffset_t off; voffset_t id; }; simple_allocator default_allocator; vector_downward buf_; // Accumulating offsets of table members while it is being built. std::vector offsetbuf_; // Ensure objects are not nested. bool nested; // Ensure the buffer is finished before it is being accessed. bool finished; std::vector vtables_; // todo: Could make this into a map? size_t minalign_; bool force_defaults_; // Serialize values equal to their defaults anyway. struct StringOffsetCompare { StringOffsetCompare(const vector_downward &buf) : buf_(&buf) {} bool operator() (const Offset &a, const Offset &b) const { auto stra = reinterpret_cast(buf_->data_at(a.o)); auto strb = reinterpret_cast(buf_->data_at(b.o)); return strncmp(stra->c_str(), strb->c_str(), std::min(stra->size(), strb->size()) + 1) < 0; } const vector_downward *buf_; }; // For use with CreateSharedString. Instantiated on first use only. typedef std::set, StringOffsetCompare> StringOffsetMap; StringOffsetMap *string_pool; }; /// @} /// @cond FLATBUFFERS_INTERNAL // Helpers to get a typed pointer to the root object contained in the buffer. template T *GetMutableRoot(void *buf) { EndianCheck(); return reinterpret_cast(reinterpret_cast(buf) + EndianScalar(*reinterpret_cast(buf))); } template const T *GetRoot(const void *buf) { return GetMutableRoot(const_cast(buf)); } template const T *GetSizePrefixedRoot(const void *buf) { return GetRoot(reinterpret_cast(buf) + sizeof(uoffset_t)); } /// Helpers to get a typed pointer to objects that are currently being built. /// @warning Creating new objects will lead to reallocations and invalidates /// the pointer! template T *GetMutableTemporaryPointer(FlatBufferBuilder &fbb, Offset offset) { return reinterpret_cast(fbb.GetCurrentBufferPointer() + fbb.GetSize() - offset.o); } template const T *GetTemporaryPointer(FlatBufferBuilder &fbb, Offset offset) { return GetMutableTemporaryPointer(fbb, offset); } // Helper to see if the identifier in a buffer has the expected value. inline bool BufferHasIdentifier(const void *buf, const char *identifier) { return strncmp(reinterpret_cast(buf) + sizeof(uoffset_t), identifier, FlatBufferBuilder::kFileIdentifierLength) == 0; } // Helper class to verify the integrity of a FlatBuffer class Verifier FLATBUFFERS_FINAL_CLASS { public: Verifier(const uint8_t *buf, size_t buf_len, size_t _max_depth = 64, size_t _max_tables = 1000000) : buf_(buf), end_(buf + buf_len), depth_(0), max_depth_(_max_depth), num_tables_(0), max_tables_(_max_tables) #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE , upper_bound_(buf) #endif {} // Central location where any verification failures register. bool Check(bool ok) const { #ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE assert(ok); #endif #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE if (!ok) upper_bound_ = buf_; #endif return ok; } // Verify any range within the buffer. bool Verify(const void *elem, size_t elem_len) const { #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE auto upper_bound = reinterpret_cast(elem) + elem_len; if (upper_bound_ < upper_bound) upper_bound_ = upper_bound; #endif return Check(elem_len <= (size_t) (end_ - buf_) && elem >= buf_ && elem <= end_ - elem_len); } // Verify a range indicated by sizeof(T). template bool Verify(const void *elem) const { return Verify(elem, sizeof(T)); } // Verify a pointer (may be NULL) of a table type. template bool VerifyTable(const T *table) { return !table || table->Verify(*this); } // Verify a pointer (may be NULL) of any vector type. template bool Verify(const Vector *vec) const { const uint8_t *end; return !vec || VerifyVector(reinterpret_cast(vec), sizeof(T), &end); } // Verify a pointer (may be NULL) of a vector to struct. template bool Verify(const Vector *vec) const { return Verify(reinterpret_cast *>(vec)); } // Verify a pointer (may be NULL) to string. bool Verify(const String *str) const { const uint8_t *end; return !str || (VerifyVector(reinterpret_cast(str), 1, &end) && Verify(end, 1) && // Must have terminator Check(*end == '\0')); // Terminating byte must be 0. } // Common code between vectors and strings. bool VerifyVector(const uint8_t *vec, size_t elem_size, const uint8_t **end) const { // Check we can read the size field. if (!Verify(vec)) return false; // Check the whole array. If this is a string, the byte past the array // must be 0. auto size = ReadScalar(vec); auto max_elems = FLATBUFFERS_MAX_BUFFER_SIZE / elem_size; if (!Check(size < max_elems)) return false; // Protect against byte_size overflowing. auto byte_size = sizeof(size) + elem_size * size; *end = vec + byte_size; return Verify(vec, byte_size); } // Special case for string contents, after the above has been called. bool VerifyVectorOfStrings(const Vector> *vec) const { if (vec) { for (uoffset_t i = 0; i < vec->size(); i++) { if (!Verify(vec->Get(i))) return false; } } return true; } // Special case for table contents, after the above has been called. template bool VerifyVectorOfTables(const Vector> *vec) { if (vec) { for (uoffset_t i = 0; i < vec->size(); i++) { if (!vec->Get(i)->Verify(*this)) return false; } } return true; } template bool VerifyBufferFromStart(const char *identifier, const uint8_t *start) { if (identifier && (size_t(end_ - start) < 2 * sizeof(flatbuffers::uoffset_t) || !BufferHasIdentifier(start, identifier))) { return false; } // Call T::Verify, which must be in the generated code for this type. return Verify(start) && reinterpret_cast(start + ReadScalar(start))-> Verify(*this) #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE && GetComputedSize() #endif ; } // Verify this whole buffer, starting with root type T. template bool VerifyBuffer(const char *identifier) { return VerifyBufferFromStart(identifier, buf_); } template bool VerifySizePrefixedBuffer(const char *identifier) { return Verify(buf_) && ReadScalar(buf_) == end_ - buf_ - sizeof(uoffset_t) && VerifyBufferFromStart(identifier, buf_ + sizeof(uoffset_t)); } // Called at the start of a table to increase counters measuring data // structure depth and amount, and possibly bails out with false if // limits set by the constructor have been hit. Needs to be balanced // with EndTable(). bool VerifyComplexity() { depth_++; num_tables_++; return Check(depth_ <= max_depth_ && num_tables_ <= max_tables_); } // Called at the end of a table to pop the depth count. bool EndTable() { depth_--; return true; } #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE // Returns the message size in bytes size_t GetComputedSize() const { uintptr_t size = upper_bound_ - buf_; // Align the size to uoffset_t size = (size - 1 + sizeof(uoffset_t)) & ~(sizeof(uoffset_t) - 1); return (buf_ + size > end_) ? 0 : size; } #endif private: const uint8_t *buf_; const uint8_t *end_; size_t depth_; size_t max_depth_; size_t num_tables_; size_t max_tables_; #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE mutable const uint8_t *upper_bound_; #endif }; // Convenient way to bundle a buffer and its length, to pass it around // typed by its root. // A BufferRef does not own its buffer. struct BufferRefBase {}; // for std::is_base_of template struct BufferRef : BufferRefBase { BufferRef() : buf(nullptr), len(0), must_free(false) {} BufferRef(uint8_t *_buf, uoffset_t _len) : buf(_buf), len(_len), must_free(false) {} ~BufferRef() { if (must_free) free(buf); } const T *GetRoot() const { return flatbuffers::GetRoot(buf); } bool Verify() { Verifier verifier(buf, len); return verifier.VerifyBuffer(nullptr); } uint8_t *buf; uoffset_t len; bool must_free; }; // "structs" are flat structures that do not have an offset table, thus // always have all members present and do not support forwards/backwards // compatible extensions. class Struct FLATBUFFERS_FINAL_CLASS { public: template T GetField(uoffset_t o) const { return ReadScalar(&data_[o]); } template T GetStruct(uoffset_t o) const { return reinterpret_cast(&data_[o]); } const uint8_t *GetAddressOf(uoffset_t o) const { return &data_[o]; } uint8_t *GetAddressOf(uoffset_t o) { return &data_[o]; } private: uint8_t data_[1]; }; // "tables" use an offset table (possibly shared) that allows fields to be // omitted and added at will, but uses an extra indirection to read. class Table { public: const uint8_t *GetVTable() const { return data_ - ReadScalar(data_); } // This gets the field offset for any of the functions below it, or 0 // if the field was not present. voffset_t GetOptionalFieldOffset(voffset_t field) const { // The vtable offset is always at the start. auto vtable = GetVTable(); // The first element is the size of the vtable (fields + type id + itself). auto vtsize = ReadScalar(vtable); // If the field we're accessing is outside the vtable, we're reading older // data, so it's the same as if the offset was 0 (not present). return field < vtsize ? ReadScalar(vtable + field) : 0; } template T GetField(voffset_t field, T defaultval) const { auto field_offset = GetOptionalFieldOffset(field); return field_offset ? ReadScalar(data_ + field_offset) : defaultval; } template P GetPointer(voffset_t field) { auto field_offset = GetOptionalFieldOffset(field); auto p = data_ + field_offset; return field_offset ? reinterpret_cast

(p + ReadScalar(p)) : nullptr; } template P GetPointer(voffset_t field) const { return const_cast(this)->GetPointer

(field); } template P GetStruct(voffset_t field) const { auto field_offset = GetOptionalFieldOffset(field); auto p = const_cast(data_ + field_offset); return field_offset ? reinterpret_cast

(p) : nullptr; } template bool SetField(voffset_t field, T val) { auto field_offset = GetOptionalFieldOffset(field); if (!field_offset) return false; WriteScalar(data_ + field_offset, val); return true; } bool SetPointer(voffset_t field, const uint8_t *val) { auto field_offset = GetOptionalFieldOffset(field); if (!field_offset) return false; WriteScalar(data_ + field_offset, static_cast(val - (data_ + field_offset))); return true; } uint8_t *GetAddressOf(voffset_t field) { auto field_offset = GetOptionalFieldOffset(field); return field_offset ? data_ + field_offset : nullptr; } const uint8_t *GetAddressOf(voffset_t field) const { return const_cast

(this)->GetAddressOf(field); } bool CheckField(voffset_t field) const { return GetOptionalFieldOffset(field) != 0; } // Verify the vtable of this table. // Call this once per table, followed by VerifyField once per field. bool VerifyTableStart(Verifier &verifier) const { // Check the vtable offset. if (!verifier.Verify(data_)) return false; auto vtable = GetVTable(); // Check the vtable size field, then check vtable fits in its entirety. return verifier.VerifyComplexity() && verifier.Verify(vtable) && (ReadScalar(vtable) & (sizeof(voffset_t) - 1)) == 0 && verifier.Verify(vtable, ReadScalar(vtable)); } // Verify a particular field. template bool VerifyField(const Verifier &verifier, voffset_t field) const { // Calling GetOptionalFieldOffset should be safe now thanks to // VerifyTable(). auto field_offset = GetOptionalFieldOffset(field); // Check the actual field. return !field_offset || verifier.Verify(data_ + field_offset); } // VerifyField for required fields. template bool VerifyFieldRequired(const Verifier &verifier, voffset_t field) const { auto field_offset = GetOptionalFieldOffset(field); return verifier.Check(field_offset != 0) && verifier.Verify(data_ + field_offset); } private: // private constructor & copy constructor: you obtain instances of this // class by pointing to existing data only Table(); Table(const Table &other); uint8_t data_[1]; }; /// @brief This can compute the start of a FlatBuffer from a root pointer, i.e. /// it is the opposite transformation of GetRoot(). /// This may be useful if you want to pass on a root and have the recipient /// delete the buffer afterwards. inline const uint8_t *GetBufferStartFromRootPointer(const void *root) { auto table = reinterpret_cast(root); auto vtable = table->GetVTable(); // Either the vtable is before the root or after the root. auto start = std::min(vtable, reinterpret_cast(root)); // Align to at least sizeof(uoffset_t). start = reinterpret_cast( reinterpret_cast(start) & ~(sizeof(uoffset_t) - 1)); // Additionally, there may be a file_identifier in the buffer, and the root // offset. The buffer may have been aligned to any size between // sizeof(uoffset_t) and FLATBUFFERS_MAX_ALIGNMENT (see "force_align"). // Sadly, the exact alignment is only known when constructing the buffer, // since it depends on the presence of values with said alignment properties. // So instead, we simply look at the next uoffset_t values (root, // file_identifier, and alignment padding) to see which points to the root. // None of the other values can "impersonate" the root since they will either // be 0 or four ASCII characters. static_assert(FlatBufferBuilder::kFileIdentifierLength == sizeof(uoffset_t), "file_identifier is assumed to be the same size as uoffset_t"); for (auto possible_roots = FLATBUFFERS_MAX_ALIGNMENT / sizeof(uoffset_t) + 1; possible_roots; possible_roots--) { start -= sizeof(uoffset_t); if (ReadScalar(start) + start == reinterpret_cast(root)) return start; } // We didn't find the root, either the "root" passed isn't really a root, // or the buffer is corrupt. // Assert, because calling this function with bad data may cause reads // outside of buffer boundaries. assert(false); return nullptr; } // Base class for native objects (FlatBuffer data de-serialized into native // C++ data structures). // Contains no functionality, purely documentative. struct NativeTable { }; /// @brief Function types to be used with resolving hashes into objects and /// back again. The resolver gets a pointer to a field inside an object API /// object that is of the type specified in the schema using the attribute /// `cpp_type` (it is thus important whatever you write to this address /// matches that type). The value of this field is initially null, so you /// may choose to implement a delayed binding lookup using this function /// if you wish. The resolver does the opposite lookup, for when the object /// is being serialized again. typedef uint64_t hash_value_t; #ifdef FLATBUFFERS_CPP98_STL typedef void (*resolver_function_t)(void **pointer_adr, hash_value_t hash); typedef hash_value_t (*rehasher_function_t)(void *pointer); #else typedef std::function resolver_function_t; typedef std::function rehasher_function_t; #endif // Helper function to test if a field is present, using any of the field // enums in the generated code. // `table` must be a generated table type. Since this is a template parameter, // this is not typechecked to be a subclass of Table, so beware! // Note: this function will return false for fields equal to the default // value, since they're not stored in the buffer (unless force_defaults was // used). template bool IsFieldPresent(const T *table, voffset_t field) { // Cast, since Table is a private baseclass of any table types. return reinterpret_cast(table)->CheckField(field); } // Utility function for reverse lookups on the EnumNames*() functions // (in the generated C++ code) // names must be NULL terminated. inline int LookupEnum(const char **names, const char *name) { for (const char **p = names; *p; p++) if (!strcmp(*p, name)) return static_cast(p - names); return -1; } // These macros allow us to layout a struct with a guarantee that they'll end // up looking the same on different compilers and platforms. // It does this by disallowing the compiler to do any padding, and then // does padding itself by inserting extra padding fields that make every // element aligned to its own size. // Additionally, it manually sets the alignment of the struct as a whole, // which is typically its largest element, or a custom size set in the schema // by the force_align attribute. // These are used in the generated code only. #if defined(_MSC_VER) #define MANUALLY_ALIGNED_STRUCT(alignment) \ __pragma(pack(1)); \ struct __declspec(align(alignment)) #define STRUCT_END(name, size) \ __pragma(pack()); \ static_assert(sizeof(name) == size, "compiler breaks packing rules") #elif defined(__GNUC__) || defined(__clang__) #define MANUALLY_ALIGNED_STRUCT(alignment) \ _Pragma("pack(1)") \ struct __attribute__((aligned(alignment))) #define STRUCT_END(name, size) \ _Pragma("pack()") \ static_assert(sizeof(name) == size, "compiler breaks packing rules") #else #error Unknown compiler, please define structure alignment macros #endif // String which identifies the current version of FlatBuffers. // flatbuffer_version_string is used by Google developers to identify which // applications uploaded to Google Play are using this library. This allows // the development team at Google to determine the popularity of the library. // How it works: Applications that are uploaded to the Google Play Store are // scanned for this version string. We track which applications are using it // to measure popularity. You are free to remove it (of course) but we would // appreciate if you left it in. // Weak linkage is culled by VS & doesn't work on cygwin. #if !defined(_WIN32) && !defined(__CYGWIN__) extern volatile __attribute__((weak)) const char *flatbuffer_version_string; volatile __attribute__((weak)) const char *flatbuffer_version_string = "FlatBuffers " FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MAJOR) "." FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MINOR) "." FLATBUFFERS_STRING(FLATBUFFERS_VERSION_REVISION); #endif // !defined(_WIN32) && !defined(__CYGWIN__) #define DEFINE_BITMASK_OPERATORS(E, T)\ inline E operator | (E lhs, E rhs){\ return E(T(lhs) | T(rhs));\ }\ inline E operator & (E lhs, E rhs){\ return E(T(lhs) & T(rhs));\ }\ inline E operator ^ (E lhs, E rhs){\ return E(T(lhs) ^ T(rhs));\ }\ inline E operator ~ (E lhs){\ return E(~T(lhs));\ }\ inline E operator |= (E &lhs, E rhs){\ lhs = lhs | rhs;\ return lhs;\ }\ inline E operator &= (E &lhs, E rhs){\ lhs = lhs & rhs;\ return lhs;\ }\ inline E operator ^= (E &lhs, E rhs){\ lhs = lhs ^ rhs;\ return lhs;\ }\ inline bool operator !(E rhs) \ {\ return !bool(T(rhs)); \ } /// @endcond } // namespace flatbuffers #endif // FLATBUFFERS_H_